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Abstract

Online resource allocation is a rich and varied field. One of the most well-known problems
in this area is online bipartite matching, introduced in 1990 by Karp, Vazirani, and Vazirani
[KVV90]. Since then, many variants have been studied, including AdWords, the generalized
assignment problem (GAP), and online submodular welfare maximization.

In this paper, we introduce a generalization of GAP which we call the submodular assignment
problem (SAP). This generalization captures many online assignment problems, including all
classical online bipartite matching problems as well as broader online combinatorial optimization
problems such as online arboricity, flow scheduling, and laminar restricted allocations. We
present a fractional algorithm for online SAP that is (1− 1

e )-competitive.
Additionally, we study several integral special cases of the problem. In particular, we provide

a (1 − 1
e − ε)-competitive integral algorithm under a small-bids assumption, and a (1 − 1

e )-
competitive integral algorithm for online submodular welfare maximization where the utility
functions are given by rank functions of matroids.

The key new ingredient for our results is the construction and structural analysis of a “water
level” vector for polymatroids, which allows us to generalize the classic water-filling paradigm
used in online matching problems. This construction reveals connections to submodular utility
allocation markets and principal partition sequences of matroids.
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1 Introduction

Online assignment problems are fundamental in the study of online algorithms. Perhaps the most
well-known online assignment problem is online bipartite matching, introduced by Karp, Vazirani,
and Vazirani [KVV90]. In online bipartite matching, we are given one side of a bipartite graph
(the offline vertices) in advance, while the vertices on the other side arrive online. When an online
vertex arrives, all of its incident edges are revealed, and the algorithm selects at most one of the
edges. The goal is to maximize the number of edges chosen, subject to the edges being a matching
in the graph. For this problem, Karp, Vazirani, and Vazirani proposed the Ranking algorithm
which achieves a tight 1− 1/e competitive ratio.

Since then, online bipartite matching has received considerable attention, and more general
variations of the problem have been studied. Some of the most prominent examples include:

• Vertex and Edge Weighted Variants. In vertex weighted online bipartite matching, each
offline vertex has a weight, and the goal is to maximize the sum of the weights of the matched
offline vertices. In the more general edge-weighted setting, individual edges have weight and
the goal is to maximize the sum of the weights of the selected edges.

• AdWords. This was introduced by Mehta, Saberi, Vazirani, and Vazirani [MSVV07], mo-
tivated by the AdWords market in digital advertising. Each offline vertex i has a budget Bi

and each edge e has a bid be. Selecting an edge consumes an amount of budget from the
offline vertex equal to the bid of the edge. The goal is to maximize the total sum of the bids
of the selected edges, subject to the budget constraints. Note that vertex-weighted bipartite
matching is a special case of AdWords with bij = Bi for all edges ij.

• Generalized Assignment Problem (GAP). Here, every offline vertex has a budget Bi,
and every edge e has both a value ve and a cost be. The goal is to maximize the total value
of the selected edges, such that the total cost of the edges incident to any offline vertex does
not exceed its budget. This is one of the broadest online matching problems that has been
studied in the literature, and generalizes all of the settings above. In particular, AdWords is
the special case of GAP with be = ve for all edges e. Edge-weighted bipartite matching is the
case with all Bi and be equal to 1.

All of the above problems admit (1 − 1/e)-competitive algorithms under various assumptions.
For vertex-weighted bipartite matching, Aggarwal, Goel, Karande and Mehta [AGKM11] give a
generalization of the Ranking algorithm which is (1 − 1/e)-competitive. For AdWords, [MSVV07]
show the same competitive ratio can be achieved for the fractional version of the problem, and
more generally for the integral version under a small-bids assumption.1 Edge-weighted bipartite
matching and GAP are commonly studied under the “free disposal” assumption, which is necessary
to outmaneuver a trivial 1/n hardness in these settings. Under free disposal, (1 − 1/e)-competitive
algorithms can be obtained for fractional edge-weighted bipartite matching and GAP, and for GAP
under a small-bids assumption [FKM+09].

Nevertheless, many natural online assignment problems exist which are not captured by the
above settings. We illustrate these in the examples below. To our knowledge, no optimally com-
petitive algorithms for these problems are implied by prior work.

1The small-bids assumption states that the ratio be
Bi

should be small, for any offline i and any edge e incident to i.
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• Laminar Restricted Matchings. Consider the AdWords problem. Suppose that in addi-
tion to the budget constraints for each offline node, we have a laminar family S of subsets of
offline nodes, and there is a budget constraint for each S ∈ S. For instance, this can model a
setting where a company has several departments each with their own individual ad budget,
and the company as a whole also has an additional budget constraint for the total amount
that can be spent across all its departments.

• Matroid Coloring. Suppose we have a matroidM whose elements arrive one by one online.
We have ∆ colors and may irrevocably assign a color to each element as it arrives, subject to
the constraint that each color must be independent inM. The objective is to color as many
elements as possible. Two natural applications of this problem are:

– Online Arboricity. Suppose the edges of an undirected graph G = (V,E) arrive online.
When each edge arrives, we irrevocably decide whether or not to select it. The goal is to
maintain the largest possible sub-graph with arboricity2 at most ∆. One way to solve
this problem is by modelling it as a matroid coloring problem, whereM is the graphic
matroid associated with G. The arboricity of a graph is a well studied property which
has been used to maintain dynamic edge orientations [CCH+23] and proper colorings of
a sub-graph [CR22].

– Flow Scheduling. Suppose we have a network N , with integer capacities on the edges,
that is known up front with a single sink t. The times where the network is available for
use is partitioned into ∆ many time slots. Source vertices with unit demand appear one
by one. When a source sj appears, we must schedule it in one of the time slots (or not
schedule it at all). The goal is to maximize the number of assignments, such that for
every time slot, it is feasible to simultaneously send the flow for all sources scheduled in
that slot. This is matroid coloring whereM is a gammoid.

• Coflows. Say we have a computing resource which may process some tasks in parallel.
For example, perhaps a single server rack is made up of different servers, each of which is
equipped to handle only certain types of tasks. What a server rack can handle is modelled
via a bipartite graph, with potential tasks on one side and servers of the server rack on the
other. Tasks which may be processed together on a single rack form a transversal matroid;
these are called coflows, inspired by applications to MapReduce [CS12]. Coflows governed
by general matroid constraints have been studied [JKR17, IMPP19] in an offline setting. In
an online formulation of this problem, we have ∆ server racks and n tasks arriving online.
The tasks are splittable, but have different costs and values for being completed at different
servers (i.e., some servers are closer or cheaper than others). We must irrevocably split tasks
among computing resources, though we my drop tasks later on; the goal is to handle as many
tasks as possible.

In this paper, we define the Online Submodular Assignment Problem, which captures all of
the problems described earlier as special cases. Via our results on this more general problem, we
provide 1− 1/e competitive algorithms for all the problems above.

2The arboricity of a graph is the minimum number of forests required to cover its edges.
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1.1 Problem Statement

The Online Submodular Assignment Problem (Online SAP for brevity), is as follows. We have an
(offline) monotone submodular3 function f over ground set E with f(∅) = 0 and f({e}) > 0 for
all e ∈ E.4 Every element e ∈ E has a value ve and a cost be. The ground set, initially unknown,
is partitioned into parts Q1, . . . , Qm that arrive online one-by-one. Upon arrival, each Qj reveals
its contained elements along with their values and costs. We have offline access to an evaluation
oracle for f that may be called on any subset of elements revealed so far.

When a part Qj arrives, we may select at most one element from Qj . At any point, we also can
choose to freely dispose of elements previously selected (known as the free disposal assumption).5

The goal is to choose a set S∗ ⊆ E so as to maximize
∑

e∈S∗ ve while maintaining that S∗ satisfies
the online assignment constraints

|S∗ ∩Qj | ≤ 1 for all j ∈ {1, . . . ,m}

and the offline submodular constraints∑
e∈S

be ≤ f(S) for all S ⊆ S∗

We note that, since online SAP is a generalization of edge weighted online bipartite matching, the
free disposal assumption is necessary to avoid a trivial 1/n-hardness.

In the fractional variant of this problem, we instead choose a fractional allocation (xe)e∈Qj on
the elements in Qj when it arrives. In accord with the free disposal assumption, we may decrease xe
at any point. The objective is to maximize the final value of

∑
e∈E vexe. As before, we must allocate

no more than 1 total unit to elements in each Qj . In other words, we have x(Qj) :=
∑

e∈Qj
xe ≤ 1.

Moreover, the total cost vector bx := (bexe)e∈E must obey submodular constraints defined by f ,
i.e., so that bx(S) =

∑
e∈S bexe ≤ f(S) for every S ⊆ E. Put another way, we must maintain a

point x ∈ Pf ∩Q, where Pf and Q are defined respectively as:

Pf :=
{
x ∈ RE

≥0 : bx(S) ≤ f(S) for every S ⊆ E
}

and
Q :=

{
x ∈ RE

≥0 : x(Qj) ≤ 1 for every j = 1, . . . , n
}
.

Note that Online SAP captures all three assignment problems posed in the introduction. We
show how the Laminar Restricted Matching Problem can be modeled as Online SAP in Appendix B.
In Online Matroid Coloring, to color a matroidM online with ∆ colors, we consider the product
matroid M∆ := M× . . . ×M and define the submodular constraint to be the rank function of
the lifted matroid f := rankM∆ . The assignment constraint dictates each element may map to
at most 1 color, and the submodular constraint f := rankM∆ enforces that each color remains an
independent set inM. The third problem is a version of weighted matroid coloring, where elements
have different valuations for different colors.

3A function f : 2E → R≥0 is submodular if for all A,B ⊆ E, we have f(A ∪ B) ≤ f(A) + f(B)− f(A ∩ B). It is
monotone if f(A) ≤ f(B) whenever A ⊆ B.

4This assumption is without loss of generality, since any e with f({e}) = 0 can be removed.
5For our results this assumption is not used in settings where ve = be for all e, generalizing results for AdWords.
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1.2 Our Contributions

We introduce the online submodular assignment problem, which encompasses many online as-
signment problems. Some of these are well-known, including vertex- and edge-weighted bipartite
matching, AdWords, and GAP. Others, such as laminar restricted matching, matroid coloring, and
coflow assignment, have not been solved previously. Not only do we get optimal competitive ratios
for online SAP in several settings, but in doing so we develop a novel framework for handling sub-
modular constraints in online assignment. We consider the development of this machinery to be
the primary contribution of our work, as we believe it may be broadly useful for future applications
to problems with similar structure.

Our first main theorem concerns the fractional version of online SAP.

Theorem 1.1. There exists a deterministic (1−1/e)-competitive algorithm for the fractional Online
Submodular Assignment problem.

We note that the (1− 1/e) competitive ratio is tight, as there is a matching upper bound even
for the special case of fractional online bipartite matching [Fei19].

Next, we show that our fractional algorithm can be adapted to an integral algorithm under a
“small bids” assumption. This type of assumption is often made in the AdWords setting [MSVV07,
FKM+09], where the costs (or “bids”) are assumed to be small compared to the budgets of the
advertisers. Specifically, the cost be of an offline vertex is assumed to at most a ε-fraction of the total
budget of its offline vertex for some ε > 0. We note that it is still an open problem to determine the
optimal competitive ratio for integral AdWords without the assumption of small bids; only recently
have researchers developed an algorithm that achieves a competitive ratio better than 1/2 [HZZ20].

Our next result concerns the integral version of online SAP under a small bids assumption about
the marginal functions fT (S) := f(S ∪ T ) − f(T ). This generalizes the small bids assumption for
AdWords.

Assumption 1.2 (Small Bids). Assume there exists some ε > 0 such that for all e ∈ E and T ⊆ E
with fT ({e}) > 0, we have be ≤ εfT ({e}).

Theorem 1.3. Under the small bids assumption (Assumption 1.2), there is a deterministic integral
algorithm for online SAP which is (1− ε)2 ·

(
1− 1

e

)
-competitive.

In addition to our result in the small bids setting, we also obtain 1 − 1/e competitiveness in a
special case of the integral setting without the need for a small bids assumption. Suppose that the
submodular function f is the rank function of a cross-product matroidM :=M1× . . .×Mn, and
each part Qj contains at most one element from each Mi. Then, assuming be = ve = 1 for all
e, this case of Online SAP is equivalent to the Online Submodular Welfare Maximization problem
where the agents have matroid rank valuations.

The Online Submodular Welfare Maximization Problem (OSWM), is the problem of assigning
m indivisible items, which arrive online, to n agents with utility functions fi : 2

[m] → R≥0. Each
utility function fi is assumed to be a monotone, submodular function on [m]. The goal is to
find an assignment σ : [m] → [n] that maximizes the total welfare of the agents, i.e., the sum of
the utilities

∑n
i=1 fi(σ

−1(i)). In the offline setting, a 1 − 1/e approximation algorithm for OSWM
can be achieved using an algorithm for Monotone Submodular Maximization subject to a matroid
constraint [CCPV11]. Surprisingly however, Kapralov, Post, and Vondrák [KPV13] show that,
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in the online setting, achieving an competitive ratio greater than 1/2 in polynomial time (1/2 is
achieved trivially with the Greedy algorithm) is impossible unless NP = RP. By providing an
integral algorithm for Online SAP in this special case, we are able to show that this barrier can be
circumvented if the class of monotone submodular utility functions is restricted to rank functions
of a matroid over ground set [m].

Theorem 1.4. There exists a randomized polynomial time (1−1/e)-competitive algorithm for Online
Submodular Welfare Maximization when the agents’ utility functions are matroid rank functions.

This setting captures (integral) online matroid coloring. Indeed, given a matroidM we seek to
color online, each item represents an edge and each agent represents a color class. Thus, our result
implies a (1− 1

e )-competitive algorithm for integral online matroid coloring.

1.3 Technical Overview

We primarily examine online submodular assignment in the fractional setting, as the same tech-
niques yield results for the integral setting with small bids. For this problem, we will employ a
continuous pricing-based allocation, in which we place prices pe on elements e ∈ E and allocate
continuously to the element maximizing utility ve − pe. This approach is similar to algorithms by
[MSVV07], [FKM+09], and [KP00], which have yielded (1− 1/e)-competitive algorithms for a wide
range of online matching problems, including edge weighted online bipartite matching, AdWords,
and GAP. Each of these can be interpreted as general forms of the classic water filling algorithm
for online bipartite matching.

In standard online matching, the water-filling algorithm keeps track of a water level for each
offline vertex, which is the fractional amount it has been filled so far. Upon the arrival of each
online vertex, the algorithm continuously sends water to its neighbors with the current lowest water
level, until either all neighbors have been filled or the arriving vertex has been depleted.

Submodular Water Levels The key challenge in obtaining a water-filling type algorithm for
online SAP is adapting the concept of “water levels” from prior work on matchings, to a general
submodular constrained linear program. Intuitively, given a fractional allocation {xe}e∈E , we would
like to assign a water level we to element e which represents how “filled” it is under the allocation
x. This water level is then used to determine the price of each element, with a higher water level
leading to a higher price.

In online bipartite matching, the water level of an edge (i, j) (where i is offline and j is online), is
the fraction of vertex i’s capacity occupied by x, namely

∑
j′∼i xij′ . In the submodular assignment

setting, edges become elements e ∈ E, but there is no longer a notion of unit-capacity vertices.
Suppose momentarily that be = 1 for all e, for ease of presentation. Then each e is involved in
many submodular constraints of the form x(S) ≤ f(S) for each S ∋ e, and it is not immediately
clear how these constraints should be aggregated into a single water level we.

Nevertheless, we show that there exist such “submodular water levels” that can be computed
efficiently, and that they satisfy several key properties that make a water-filling type algorithm
possible. We present three different ways of describing the submodular water levels.

1. A combinatorial description. Water levels can be viewed as a measure of density. We
describe an iterative process in Algorithm 1 which finds a densest set under x (i.e. the set with
the least multiplicative slack in its constraint), contracts this set, and repeats until all elements
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are contracted. The density at which an element gets contracted is the water level of that
element. This algorithm also demonstrates that the level sets of w correspond to a weighted
version of the principal partition sequence studied in [Nar91, Fuj08] for poly-matroids.

2. A max-min relation. The water level of an individual element e can also be described
directly via a simple max-min formula maxS∋eminT

x(S\T )
fT (S) , where fT denotes the contraction

of f by T . This definition exhibits a surprising minimax theorem showing that the water level
is also minT ̸∋emaxS

x(S\T )
fT (S) , and moreover, a “saddle point” pair of optimizing sets S∗, T ∗ for

both of these expressions can be derived from the combinatorial description of water levels.
Importantly, this definition immediately demonstrates that the water level of each element is
a continuous piecewise linear function of x.

3. A convex program. The concept of water levels also arise from market equilibria. Jain
and Vazirani [JV10] introduced a notion of submodular utility allocation (SUA) markets as
a generalization of linear Fisher markets [NRTV07, Chapter 5]. In a submodular utility
allocation market, we have some items A, each with weight ma. We would like to fractionally
select a set of items, with the goal of maximizing the Nash social welfare of the items; however,
the set of items picked must be feasible in a poly-matroid defined by a submodular function
f . It turns out the water level vector is precisely the optimal solution of an SUA market.

Once we have our notion of water levels defined, we can define an algorithm for online SAP
which is inspired by prior work in matching settings. At a high level, when a part Qj arrives, we
assign a utility to each of its elements depending on its value and current water level. We make a
small increase to the allocation of the highest utility element, and continue this process until we
can no longer increase any element while preserving feasibility.

The second key technical challenge in performing a water-filling type analysis is understanding
how the water levels change throughout the algorithm. We use a primal-dual framework, as in
[DJK13], to analyze the approximation ratio of our algorithm. In this framework, the algorithm
maintains a primal solution at every step, and for the sake of analysis, we continuously maintain a
dual solution in parallel. This dual solution will depend on the current water levels of the primal
allocation. Critically, we must prove that throughout the algorithm, the dual value is at most the
primal value and the dual solution is approximately feasible. To perform such analysis, we need a
strong structural understanding of the water level vector w and how it changes with x. We show
that the vector w is remarkably well-behaved, and each of our three viewpoints on water levels
sheds light on the properties that we will use in our analysis:

• Monotonicity and Continuity. For each e ∈ E, its water level we is monotone and
continuous in the allocation vector x (Proposition 3.4).

• Feasibility Indication. The water level vector w indicates the feasibility of allocation vector
x (Proposition 3.5). In particular, x is feasible if and only if the water levels are at most 1.

• Locality. Changing the allocation xe of some element by a small amount can only affect the
the water level of elements whose water level is equal to e’s water level.

• Duality. The water levels satisfy a duality property with the Lovász extension of f (Proposi-
tion 3.6). That is Lf (w) =

∑
e∈E xe. This property can be derived from the KKT conditions

of the convex program formulation of water levels.
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These properties allow us to keep track of how the dual objective of SAP changes with incremental
changes of the primal and dual assignments. Specifically, careful setting of the dual ensures that
approximate feasibility is maintained. Moreover, we prove a derivative formula for the Lovász
extension of f in terms of the current water levels (Lemma 3.8) which allows us to upper bound
the rate of change of the dual objective by that of the primal.

OSWM with Matroid Rank Valuations Our algorithm for Online Submodular Welfare Max-
imization for matroidal rank valuations is a natural generalization of the classical RANKING al-
gorithm for online bipartite matching. We interpret the arriving nodes as items which we assign to
the offline nodes (the agents). At the very beginning of the algorithm, we randomly permute the
agents. When an item arrives, we assign it to the “available” agent of highest priority.

In the bipartite matching case, and even for online b-matching (studied in [AS21]), whether an
agent is available simply depends on how many items have been allocated to this agent so far. In
our setting, we say that an item is available to an agent if the agent’s marginal utility for the item
is non-zero, given the items already allocated to this agent. Hence, the availability of an agent
depends on the item being considered and changes throughout the course of the algorithm.

Despite this, we show that our Matroidal RANKING algorithm always yields a tight (1 −
1
e )-competitive allocation in expectation. Similar to the analysis in [DJK13], we construct an
approximately feasible dual solution which lower bounds the welfare of our allocation. The main
technical hurdle is to define a suitable threshold r∗ij for each agent-item pair (i, j) so that the
dual assignment (which is constructed online) is approximately feasible, and whose objective value
matches the welfare of our online assignment.

Finally, we show that our algorithm can be extended in a natural way to the case where each
agent has a non-negative weight, and we seek to maximize the weighted sum of their utilities.

1.4 Related Work

Online Matching There is an extensive line of work on online matching, starting with the work
of Karp, Vazirani and Vazirani [KVV90], who gave a (1 − 1/e)-competitive algorithm for online
bipartite matching in the adversarial order setting. The same competitive ratio was extended to
the vertex-weighted setting in [AGKM11], and further to the vertex-weighted b-matching setting in
[AS21]. Devanur, Jain, and Kleinberg [DJK13] showed how the results in [KVV90] and [AGKM11]
could be derived using the online primal-dual framework, which unified and simplified the existing
analyses. While the RANKING algorithm requires O(n log n) bits of randomness, Buchbinder,
Naor, and Wajc [BNW23] provide a randomized rounding scheme requiring only (1±o(1)) log log n
bits of randomness.

For edge-weighted online bipartite matching, [FHTZ20] were the first to break the 1
2 -competitive

barrier. This has been subsequently refined in [SA21, GHH+21, BC21] to a 0.5368-competitive ratio.
Online bipartite matching has also been studied in the vertex-arrival Bayesian setting, also known
as the Ride Hail problem; [PPSW21] give a better-than-1/2 approximation for this setting.

Online Matroid Intersection Offline matroid intersection captures a broad class of combina-
torial problems and has been well studied in both polyhedral theory and algorithms (for a survey
on this topic, see [Sch03, Chapter 41]). In [GS17], Guruganesh and Singla study an online ma-
troid intersection problem, with edges arriving in random order, beating the 1/2-competitive ratio
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achieved by Greedy. This was very recently improved by Huang and Sellier [HS23] to 2/3 + ε. In
[BGH+23], the part-arrival online matroid intersection model is considered. They instead study
the problem of maintaining a max cardinality independent set, while minimizing recourse.

Offline Submodular Welfare Maximization The offline variant of Submodular Welfare Max-
imization problem can be cast as a problem of maximizing a monotone submodular function subject
to a (partition) matroid constraint. While a simple greedy algorithm achieves an approximation
ratio of 1

2 , [CCPV11] gave an improved (1 − 1/e)-approximation using the Continuous Greedy al-
gorithm followed by Pipage Rounding. There can be no (1− 1/e + ε)-approximation unless P=NP
since this problem captures max-k-cover as a special case [Fei98].

When the monotone submodular function is the rank function of a matroid, the welfare max-
imizing offline allocation can be computed optimally. These allocations have been well-studied
in the context of designing socially optimal allocations which satisfy certain desirable fairness
constraints [VZ23, DFSH23]. For example, in [BCIZ21] it is shown that an optimal allocation
which is envy-free up to one item (EFX) exists and can be computed efficiently. In [BEF21] they
study the case of valuations which have binary marginals, but which are not necessarily submodu-
lar [BEF21]. They also give truthfulness guarantees for private valuations, which has been further
studied in [BV22].

Principal Partition The principal partition of a matroid is related to our definition of water
levels. It is precisely the nested sets found in Algorithm 1, when x is the all ones vector. There
have been several works studying principal partitions, including generalizations to arbitrary vectors
x ∈ RE and extensions from rank functions to submodular functions [Nar91, Fuj08]. The objects
studied in [Nar91] and [Fuj08] are closely related to our water levels; in our work, we (1) shift
perspective from the family of nested sets in [Fuj08] to the properties of a single vector w, and (2)
study properties of how w changes dynamically with the weights given by x, such as monotonicity
(Proposition 3.4), duality (Proposition 3.6), and locality (Proposition 3.7). These properties are
clearly visible with our new perspective. We make the novel connection between principal partitions
and water-filling in online bipartite matching.

The principal partition has been used for constant competitive algorithms in the matroid sec-
retary problem under random assignment [Sot13]. Huang and Sellier [HS23] also use the principal
partition to get an improved approximation ratio of 2/3 − ε for online matroid intersection with
random order arrivals in a stream. Chandrasekaran and Wang [CW23] use the principal partition
sequence for improved approximations in the submodular k-partition problem.

1.5 Organization of the Paper

First, in Section 2, we introduce some preliminaries. Next, in Section 3, we develop a theory of water
levels and provide three equivalent formulations. In Section 4, we look at a special and illuminating
case of online SAP: online matroid intersection with part arrivals. We give a water-filling algorithm
for fractional online poly-matroid intersection and prove that it achieves a competitive ratio of
1 − 1/e. Section 5 gives the general case analysis for fractional online SAP, as well as online SAP
with a small bids assumption. In Section 6, we give a (1− 1/e)-competitive algorithm for (integral)
Online Submodular Welfare Maximization with matroidal utilities.
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2 Preliminaries

We analyze the algorithm for fractional online SAP via the primal-dual framework. The primal
linear program (LP) describing Online Submodular Assignment, as well as its dual are:

max
∑
e∈E

vexe min
∑
S⊆E

f(S) · αS +
n∑

j=1

βj

s.t.
∑

e∈Qj
xe ≤ 1, ∀j ∈ [n] s.t. be

∑
S∋e αS + βj(e) ≥ ve, ∀e ∈ E∑

e∈S bexe ≤ f(S), ∀S ⊆ E αS , βj ≥ 0, ∀S ⊆ E, j ∈ [n].

xe ≥ 0, ∀e ∈ E.

In the dual, j(e) denotes the index j for which e ∈ Qj . The solution to the primal LP is the
(fractional) optimal offline solution to a given instance, and we use OPT to denote its value. By
strong duality, the optimal values of the primal and dual LPs are the same.

It will be useful for our analysis to re-write the dual objective in a different form. Let us define
γ ∈ RE

≥0 by γe :=
∑

S∋e αS . By a standard uncrossing argument, we may assume that the optimal
dual α is supported on a nested family of sets. Thus, we can recover the part of the objective∑

S⊆E f(S) · αS from γ as ∑
S⊆E

f(S) · αS =

∫ ∞

0
f({e ∈ E : γe ≥ t}) dt. (1)

The right-hand-side integral is exactly the Lovász extension Lf of a submodular function f . This
is a natural continuous extension of the submodular function f which has been studied in many
contexts. Although equivalent formulations exist, it will be convenient for us to use the following
definition.

Definition 2.1. Let f be a monotone submodular function on E with f(∅) = 0. The Lovász
extension Lf : RE

≥0 → R of f is

Lf (w) :=

∫ ∞

0
f({e ∈ E : we ≥ t}) dt.

With this definition, we can write our dual in terms of γ as follows.

min Lf (γ) +

n∑
j=1

βj

s.t beγe + βj(e) ≥ ve, for all e ∈ E

γ, β ≥ 0.

3 Water Level Machinery

Recall that, we want to assign each element e ∈ E a water level we = w
(x)
e which depends on the

current allocation x, where x satisfies the submodular constraints given by f :

x(S) ≤ f(S) ∀S ⊆ E.
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Notice that, for the sake of defining water levels, we are assuming unweighted costs (i.e. be = 1).
This removes clutter from our definitions, as we can simply add weights later by taking w(bx).

To understand how we define this water level vector w = w(x) ∈ RE
≥0 of allocation x, we

first enumerate several properties that the water levels should satisfy in order for the water-filling
algorithm to work as it does for online bipartite matching:

1. (Monotonicity) w(x) is coordinate-wise non-decreasing in x.

2. (Indication of Feasibility) w(x) ≤ 1 if and only if x(S) ≤ f(S) for all S ⊆ E.

3. (Locality) If w
(x)
e1 ̸= w

(x)
e2 , then

∂w
(x)
e1

∂xe2
= 0.

4. (Duality) Lf (w
(x)) =

∑
e∈E xe.

Monotonicity and feasibility indication are natural properties which intuitively require that we

is an indicator of how close xe is to being part of a tight constraint. The need for locality and duality
is less obvious, but they are important for the details of the primal-dual analysis of water-filling.
Specifically, this is because the dual value γe of an element e ∈ E will be defined as a function of
the water level we. The locality and duality properties are needed to relate increases in the dual
objective term Lf (γ) to increases to the primal objective

∑
e∈E xe as the algorithm progresses.

3.1 Definition of Water Levels and Equivalent Formulations

In order to define a water level vector that satisfies our desired properties, it will be convenient
(and enlightening) to provide both algorithmic and static definitions, which we will prove are
equivalent. By juggling three different definitions, we are able to provide succinct proofs of the four
key properties of water levels.

First, let’s consider a naive construction w̃
(x)
e . For x ∈ RE

≥0, we define w̃
(x)
e = maxS∋e

x(S)
f(S) , i.e.

the maximum density of a poly-matroid constraint involving xe. Such a definition clearly satisfies
monotonicity and indication of feasibility. However, this definition does not capture the water levels
from the classic bipartite matching setting (i.e. in a partition matroid), and we can see this already
in the simple setting of E = {1, 2} and f(S) = |S|. In such a setting, the poly-matroid effectively
only has the constraints 0 ≤ x1, x2 ≤ 1, so we intuitively should let we = xe. However, notice that
if x1 < x2, then we have w̃1 = maxS∋1

x(S)
f(S) = x1+x2

2 . We see that this construction deviates from
what we expect, and indeed we also find that our desired locality and duality properties are not
satisfied. This problem arises because the heavier element x2 influences the density of the densest
constraint on x1, despite the two variables being functionally independent.

The critical insight is that we can prevent this undesirable behavior by contracting sets with
larger density before assigning the values of we to sets with lower density. This inspires the following
formulation of water levels in Definition 3.1.

Definition 3.1. The water level vector w(x) ∈ RE
≥0 with respect to an allocation x in RE

≥0 is defined
as

w(x)
e := max

S∋e
min
T⊆E

fT ({e})̸=0

x(S \ T )
fT (S)

where fT (S) denotes the contracted function f(S ∪ T )− f(T ).
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Not only does this modification fix the problems with our naive definition, but it reveals a great
degree of hidden structure. First, it happens to be the case that the min and max in Definition 3.1

are reversible, i.e. w
(x)
e = minT maxS

x(S\T )
fT (S) . We will prove this by showing the existence of a

saddle point S∗, T ∗:

min
T⊆E

fT ({e})̸=0

x(S∗ \ T )
fT (S∗)

=
x(S∗ \ T ∗)

fT ∗(S∗)
= max

S∋e

x(S \ T ∗)

fT ∗(S)
. (2)

Furthermore, these optimal sets form a nested family. We can find ∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sk = E

such that for each e ∈ Sℓ+1 \ Sℓ, the pair (Sℓ+1, Sℓ) is a saddle point for w
(x)
e in the max-min

expression of Definition 3.1. We find the nested family via an intuitive and efficiently computable
combinatorial description of water levels, Algorithm 1.

Algorithm 1: A Combinatorial Presentation of Water Levels

input : A point x ∈ RE
≥0.

1 Initialize ℓ← 0, S0 ← ∅.
2 while Sℓ ̸= E do
3 Let Sℓ+1 be the unique maximal set6 in

arg max
S⊆E

S\Sℓ ̸=∅

x(S \ Sℓ)

fSℓ
(S)

,

i.e. the largest densest set over the contracted polymatroid.

4 Let tℓ+1 =
x(Sℓ+1\Sℓ)
fSℓ

(Sℓ+1)
be the density of Sℓ+1.

5 Set ŵe ← tℓ+1 for all e ∈ Sℓ+1 \ Sℓ.
6 ℓ← ℓ+ 1.

7 return ŵ.

Theorem 3.2 (Saddle Point for Water Levels). For any monotone submodular function f : 2E →
R≥0 with f(∅) = 0 and x ∈ RE

≥0, the vector w = w(x) in Definition 3.1 has the property

w(x)
e := max

S∋e
min
T⊆E

fT ({e}) ̸=0

x(S \ T )
fT (S)

= min
T⊆E

fT ({e})̸=0

max
S∋e

x(S \ T )
fT (S)

.

Moreover, the output ŵ of Algorithm 1 is equal to w.

For readability, we delay the proof of the min-max property of Definition 3.1 and its equivalence
to Algorithm 1 until Section 3.3.

We also find an unexpected connection to market equilibria. Jain and Vazirani [JV10] introduced
a notion of submodular utility allocation markets which can be described with the following convex

6The maximal such set is unique due to the submodularity of f .
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program.
max
u

∑
e∈E me log ue

s.t.
∑

e∈S ue ≤ f(S), ∀S ⊆ E (αS)

ue ≥ 0.

(SUA)

It turns out the water levels of an allocation x can be computed from the optimal utilities of an
SUA market where each element e has weight me := xe. Algorithm 1 gives us optimal duals to
(SUA), which we also prove in Section 3.3.

Theorem 3.3. Consider the vector ŵ, the nested sets S1 ⊂ · · · ⊂ SL, and the levels t1, . . . , tL
generated by Algorithm 1. Then t1 > · · · > tL ≥ 0. Moreover, if we define

α̂SL
:= tL

α̂Sℓ
:= tℓ − tℓ+1 ℓ = 1, . . . , L− 1

and α̂S = 0 for all other S ⊆ E, then, ûe =
xe
ŵe

is an optimal primal solution to (SUA) and α̂S is
an optimal dual solution.

3.2 Key Properties of Water Levels

Armed with the characterizations of water levels, we show they satisfy the desired properties.

Proposition 3.4 (Monotone and Continuous). The vector w(x) is coordinate-wise non-decreasing
in x. Furthermore, w(x) is continuous with respect to x.

Proof. Both properties follow immediately from Definition 3.1, since the w
(x)
e is a maximum of

minimums over monotone increasing linear functions on x.

Proposition 3.5 (Indication of Feasibility). w(x) ≤ 1 if and only if x(S) ≤ f(S) for all S ⊆ E.

Proof. This follows from Algorithm 1. If w(x) ≤ 1, then in particular t1 = maxS⊆E
x(S)
f(S) ≤ 1,

which means x(S) ≤ f(S) for all S ⊆ E. Conversely, if x(S) ≤ f(S) for all S ⊆ E then clearly
t1 ≤ 1. Moreover, the densities tℓ are decreasing by Theorem 3.3, implying tℓ ≤ 1 for all ℓ. Thus
w(x) ≤ 1.

Proposition 3.6 (Duality). For any x ∈ RE
≥0, we have Lf (w

(x)) =
∑

e∈E xe.

Proof. For this, we refer to the convex program formulation of water levels from Theorem 3.3. Tak-
ing the optimal primal/dual pair ue, αS from Theorem 3.3, the complementary slackness conditions
of (SUA) give αS

∑
e∈S ue = αSf(S) for each S ⊆ E. Summing over those S with αS > 0, we get

L∑
ℓ=1

αSℓ
f(Sℓ)

(a)
=

L∑
ℓ=1

αSℓ

∑
e∈Sℓ

ue
(b)
=

L∑
ℓ=1

αSℓ

∑
e∈Sℓ

xe
we

=
∑
e∈E

 ∑
ℓ:Sℓ∋e

αSℓ

 · xe
we

(c)
=
∑
e∈E

xe.

Here, (a) is using αS
∑

e∈S ue = αSf(S) for each S ⊆ E, (b) is because ue = xe
we

by Theorem 3.3,
and (c) is because

∑
ℓ:Sℓ∋e αSℓ

= we, using the fact that the sets Sℓ are nested and the definition of

αSℓ
in Theorem 3.3. Finally, the LHS is equal to Lf (w

(x)) by (1) and using
∑

ℓ:Sℓ∋e αSℓ
= we.
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Proposition 3.7 (Locality). For x ∈ RE
≥0 and any e1, e2 ∈ E with w

(x)
e1 ̸= w

(x)
e2 , we have

∂w
(x)
e1

∂xe2
= 0.

Proof. This follows from the continuity of w(x) with respect to x (implied by Definition 3.1) and

the algorithmic definition given by Algorithm 1. Let w
(x)
e2 = tℓ, for some step ℓ, where t1, . . . , tL

are the values from Algorithm 1 on input x, and let ε :=
min(tℓ−1−tℓ,tℓ−tℓ+1)

2 . By continuity, we may
choose δε > 0 small enough so that for any δ ∈ (−δε, δε) and y := x+ δ1e2 , we have

w(y)
e ∈ (w(x)

e − ε, w(x)
e + ε)

for all e ∈ E. It suffices to show for any such y that w
(y)
e1 = w

(x)
e1 . Consider for each t the sets

E
(x)
≥t := {e : w(x)

e ≥ t} and E
(y)
≥t := {e : w(y)

e ≥ t}. Then by our choice of ε, we have

E+ := E
(x)
≥tℓ+ε = E

(y)
≥tℓ+ε, and

E− := E
(x)
≥tℓ−ε = E

(y)
≥tℓ−ε.

Note that e2 ∈ E− \ E+.
It is clear then that the first ℓ − 1 steps of the Algorithm 1 on x and on y are identical, with

Sℓ−1 = E+ in both cases. This follows because x and y differ only in their value at e2, and

w
(y)
e2 < w

(x)
e2 + ε = tℓ + ε, so the algorithm assigns water levels to all elements e ∈ E+ before

assigning a water level to e2. Hence, if e1 has w
(x)
e1 > w

(x)
e2 , we have w

(y)
e1 = w

(x)
e1 as desired.

In the other case that e1 has w
(x)
e1 < w

(x)
e2 , observe that e1 ∈ E \E−. Moreover, for both inputs

x and y, Algorithm 1 will have some step ℓ′ ≥ ℓ (ℓ′ may differ for x and y) at which Sℓ′ = E−.
Since e2 ∈ E−, and x and y differ only at e2, then every future step of the algorithm is identical

for the two inputs. In particular, w
(y)
e1 = w

(x)
e1 .

In addition, a key consequence of the duality and locality properties is the following “chain-rule”
lemma about the partial derivatives of Lf (G(w(x))) with respect to entries of x. Such a lemma will
be useful in the primal-dual analysis of online SAP.

Lemma 3.8 (Water Level Chain Rule). If G : R≥0 → R≥0 is a non-decreasing differentiable
function with continuous derivative G′ = g, then for all x ∈ RE

≥0 and e ∈ E,

∂(Lf (G(w(x))))

∂xe
= g(w(x)

e ),

where G(w(x)) := (G(w
(x)
e ))e∈E.

Proof. For given x ∈ RE
≥0 and e ∈ E, let y = x+ ε ·1e. Then expanding Lf as an integral, applying

a change of variables, and invoking the monotonicity of G, we have

Lf (G(w(y)))− Lf (G(w(x))) =

∫ ∞

0

(
f({e′ : G(w

(y)
e′ ) ≥ t})− f({e′ : G(w

(x)
e′ ) ≥ t})

)
dt

=

∫ ∞

0

(
f({e′ : G(w

(y)
e′ ) ≥ G(u)})− f({e′ : G(w

(x)
e′ ) ≥ G(u)})

)
g(u)du

=

∫ ∞

0

(
f({e′ : w(y)

e′ ≥ u})− f({e′ : w(x)
e′ ≥ u})

)
g(u)du.
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Now, we crucially use locality (Proposition 3.7) to claim that {e′ : w(y)
e′ ≥ u} = {e′ : w(x)

e′ ≥ u} for
any u ̸∈ [w

(x)
e , w

(y)
e ]. This follows because for each e′ ∈ E and every z = x+ δ · 1e for δ ∈ [0, ε], we

have
∂w

(z)

e′
∂ze

= 0 unless w
(z)
e′ = w

(z)
e . In particular, if w

(x)
e′ lies outside the range [w

(x)
e , w

(y)
e ], then the

water level of e′ never changes as we move z from x to y. Likewise, the water level of any e′ whose

water level lies within the range [w
(x)
e , w

(y)
e ] may change, but it cannot increase beyond w

(y)
e . So

for each e′ ∈ E, either w
(y)
e′ = w

(x)
e′ ̸∈ [w

(x)
e , w

(y)
e ] or w

(x)
e′ , w

(y)
e′ ∈ [w

(x)
e , w

(y)
e ].

Using this fact, we may restrict the above integral to the range u ∈ [w
(x)
e , w

(y)
e ]. Together with

the intermediate value theorem, we have that there exists some û ∈ [w
(x)
e , w

(y)
e ] such that

Lf (G(w(y)))− Lf (G(w(x))) =

∫ w
(y)
e

w
(x)
e

(
f({e′ : w(y)

e′ ≥ u})− f({e′ : w(x)
e′ ≥ u})

)
g(u)du

= g(û) ·
∫ w

(y)
e

w
(x)
e

(
f({e′ : w(y)

e′ ≥ u})− f({e′ : w(x)
e′ ≥ u})

)
du

= g(û) · (Lf (w
(y))− Lf (w

(x))).

From duality (Proposition 3.6), we know that Lf (w
(y))− Lf (w

(x)) =
∑

e′∈E(ye′ − xe′) = ε. There-
fore, we ultimately get

Lf (G(w(y)))− Lf (G(w(x)))

ε
= g(û).

Taking the limit as ε→ 0, we have û→ w
(x)
e since w

(x)
e ≤ û ≤ w

(y)
e . By continuity of g, we finally

see that
∂(Lf (G(w(x))))

∂xe
= lim

ε→0

Lf (G(w(y)))− Lf (G(w(x)))

ε
= g(w(x)

e ).

3.3 Proofs of Equivalence of Water Level Definitions

In this sub-section, we prove the combinatorial decomposition in Algorithm 1 and the SUA market
formulation both produce the water levels vector defined in Definition 3.1.

Theorem 3.2 (Saddle Point for Water Levels). For any monotone submodular function f : 2E →
R≥0 with f(∅) = 0 and x ∈ RE

≥0, the vector w = w(x) in Definition 3.1 has the property

w(x)
e := max

S∋e
min
T⊆E

fT ({e}) ̸=0

x(S \ T )
fT (S)

= min
T⊆E

fT ({e})̸=0

max
S∋e

x(S \ T )
fT (S)

.

Moreover, the output ŵ of Algorithm 1 is equal to w.

Proof. To show the desired min-max property, it suffices to show that for any e ∈ E, there exist
sets S∗, T ∗ such that e ∈ S and fT ({e}) ̸= 0 and

min
T⊆E

fT ({e})̸=0

x(S∗ \ T )
fT (S∗)

=
x(S∗ \ T ∗)

fT ∗(S∗)
= max

S∋e

x(S \ T ∗)

fT ∗(S)
. (3)
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From this, it follows that

max
S∋e

min
T⊆E

fT ({e})̸=0

x(S \ T )
fT (S)

≥ min
T⊆E

fT ({e})̸=0

x(S∗ \ T )
fT (S∗)

=
x(S∗ \ T ∗)

fT ∗(S∗)

= max
S∋e

x(S \ T ∗)

fT ∗(S)

≥ min
T⊆E

fT ({e})̸=0

max
S∋e

x(S \ T )
fT (S)

.

Since we clearly have maxS minT
x(S\T )
fT (S) ≤ minT maxS

x(S\T )
fT (S) (omitting constraints on S, T ) it

follows that all inequalities above must be equalities.
To show that such sets obeying eq. (3) exist, we will show that they are exactly those given by

the family S0, S1, . . . , SL resulting from Algorithm 1. Specifically, we will show that for each ℓ,

min
T⊆E

fT (Sℓ) ̸=0

x(Sℓ \ T )
fT (Sℓ)

=
x(Sℓ \ Sℓ−1)

fSℓ−1
(Sℓ)

= max
S\Sℓ−1 ̸=∅

x(S \ Sℓ−1)

fSℓ−1
(S)

. (4)

From this, it follows that for each e ∈ Sℓ \ Sℓ−1, the pair of sets (Sℓ−1, Sℓ) form an optimal
pair (S∗, T ∗) in eq. (3) for e. This not only completes the proof of our min-max property, but also

implies we =
x(Sℓ\Sℓ−1)
fSℓ−1

(Sℓ)
= tℓ = ŵe.

We proceed will show by induction that eq. (4) holds for each ℓ ≥ 1. Notice that the second
equality in eq. (4) holds by choice of Sℓ in Algorithm 1, so we only need to show the first equality.

For the case ℓ = 1, suppose some set T has x(S1\T )
fT (S1)

< t1. We may assume T ⊆ S1, since

otherwise we can take T ∩ S1 since fT (S1) ≤ fT∩S1(S1). Then we have

t1 =
x(S1)

f(S1)
=

x(S1 \ T ) + x(T )

fT (S1) + f(T )
.

Since we know x(S1\T )
fT (S1)

< t1, it must then be true that x(T )
f(T ) > t1. However, this is impossible as S1

is chosen to have maximum density.
For the inductive step, let ℓ ≥ 1 and assume eq. (4) holds for all previous steps ℓ′ < ℓ. Our

reasoning will be similar to the base case, but with some extra steps. As before, take some T ⊆ E
with minimum possible value of x(Sℓ\T )

fT (Sℓ)
, and suppose x(Sℓ\T )

fT (Sℓ)
< tℓ. We may again assume T ⊆ Sℓ.

In addition, we assume that there are no e′ ̸∈ T with fT ({e′}) = 0, since adding such e′ to T can
only improve the choice of T .

We consider two cases: either Sℓ−1 ⊆ T , or Sℓ−1 \ T ̸= ∅. In the former case we have

tℓ =
x(Sℓ \ Sℓ−1)

fSℓ−1
(Sℓ)

=
x(Sℓ \ T ) + x(T \ Sℓ−1)

fT (Sℓ) + fSℓ−1
(T )

.

Since we assumed that x(Sℓ\T )
fT (Sℓ)

< tℓ, it must be the case that
x(T\Sℓ−1)
fSℓ−1

(T ) > tℓ. However, this

contradicts the choice of tℓ in Algorithm 1 as the maximum density of a set after contracting Sℓ−1.
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Now, consider the second case where Sℓ−1 \ T is nonempty. Pick e′ ∈ Sℓ−1 \ T , and let ℓ′ < ℓ
be such that ŵe′ = tℓ′ . We then have

x(Sℓ \ T )
fT (Sℓ)

=
x(Sℓ \ (Sℓ′ ∪ T )) + x(Sℓ′ \ T )

fSℓ′∪T (Sℓ) + fT (Sℓ′)
.

Notice that
x(Sℓ′\T )
fT (Sℓ′ )

≥ x(Sℓ′\Sℓ′−1)

fSℓ′−1
(Sℓ′ )

= tℓ′ by eq. (4) applied to ℓ′, which holds by our inductive

hypothesis. Since
x(Sℓ′\T )
fT (Sℓ′ )

≥ tℓ′ > tℓ >
x(Sℓ\T )
fT (Sℓ)

, this means that we must have
x(Sℓ\(Sℓ′∪T ))
fSℓ′∪T (Sℓ)

< x(Sℓ\T )
fT (Sℓ)

.

However, this contradicts the choice of T .

Theorem 3.3. Consider the vector ŵ, the nested sets S1 ⊂ · · · ⊂ SL, and the levels t1, . . . , tL
generated by Algorithm 1. Then t1 > · · · > tL ≥ 0. Moreover, if we define

α̂SL
:= tL

α̂Sℓ
:= tℓ − tℓ+1 ℓ = 1, . . . , L− 1

and α̂S = 0 for all other S ⊆ E, then, ûe =
xe
ŵe

is an optimal primal solution to (SUA) and α̂S is
an optimal dual solution.

Proof. We begin with an rephrasing of Algorithm 1. Instead of contracting elements as we did in
Algorithm 1, we “freeze” elements in Algorithm 2. Scaling x until some set is saturated is equivalent
to measuring the multiplicative slack of sets; therefore, the densities in Line 3 of Algorithm 1 are
precisely the time steps at which we freeze a new set of elements in Line 4 of Algorithm 2.

Algorithm 2: An Alternate Combinatorial Presentation of Water Levels

input : A point x ∈ Rn
≥0.

1 Initialize t = 0, all elements are considered “unfrozen”
2 while there exists an unfrozen element do
3 Raise t until the vector

x(t) =

{
t · xe if e is unfrozen

tfrozen(e) · xe if e is frozen

has a tight set including at least one unfrozen element.
4 Freeze all the elements in the (unique) largest such tight set St of t · x.
5 We set all newly frozen elements in S to have tfrozen(e) := t.
6 Set ŵe =

1
t for all e ∈ St.

output: A vector ŵ.

We use the KKT conditions to show ûe and α̂S are optimal. Denote the Lagrange multipliers
for the constraints ûe ≥ 0 by µe. We will set µe = 0 if xe > 0 and µe = we otherwise. The KKT
conditions are as follows:

• Primal Feasibility:
∑

e∈S ûe ≤ f(S) for all S ⊆ E.
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• Dual Feasibility: α̂S ≥ 0 for all S ⊆ E.

• Stationarity Conditions: For all e ∈ E,

xe
ûe

=
∑
S∋e

α̂S − µe.

• Complementary Slackness: α̂S > 0 implies
∑

e∈S ûe = f(S) and µe · ûe = 0.

Primal feasibility follows from the fact that Algorithm 2 maintains feasibility of t · x on unfrozen
elements. Dual feasibility also easily follows since t only rises. If xe > 0, then µe = 0 and

xe
ûe

= ŵe =
∑
S∋e

α̂S

as desired. Otherwise, if xe = 0, then since µe = ŵe, the stationary condition still holds. Lastly,
we check complementary slackness. We have a positive α̂S precisely on the sets E1, . . . , EL, and
so it suffices to check these sets are tight. Indeed, by definition of Algorithm 2, these sets are
tight. Lastly, we have that if xe > 0, then µe = 0 and that finishes our complementary slackness
conditions.

4 A Warm Up: Online Matroid Intersection

With our new vector of water levels w(x) defined, we will see how they can be used to naturally
extend the water-filling paradigm. Before proving Theorem 1.1 for general online SAP, we will see
how our techniques can be applied in a simpler setting: fractional online matroid intersection with
part arrival.

In Online Matroid Intersection, the goal is to maximize the size of a common independent set
between two matroids, when the elements are initially unknown and arrive in some online fashion.
We focus on the case where one of the matroids is a partition matroid. In particular, supposeM
is an arbitrary matroid and Q is a partition matroid with parts Q1, . . . , Qn, both defined over (an
initially unknown) ground set E. We have access to an independence oracle for M restricted to
the elements which have been revealed so far; in other words,M is known offline. Parts from the
partition matroid arrive online. When a part Qj arrives, the elements in Qj are revealed, and we
immediately and irrevocably choose at most one element from Qj . The goal is to maximize the
cardinality of the set of chosen elements, subject to the set being independent in both matroids.
In the fractional version of this problem, instead of choosing one e ∈ Qj , we select values xe ≥ 0
for e ∈ Qj so that x(Qj) ≤ 1 and x remains feasible in the matroid polytope. Online matroid
intersection, and the corresponding fractional problem, are instances of online (fractional) SAP
where ve = be = 1 for all e ∈ E, and f(S) := rankM(S).

Our fractional algorithm for this problem will, upon receiving part Qj , continuously allo-
cate infinitesimally small dxe to xe for some e ∈ Qj which has minimum water level, i.e. e ∈
argmine′∈Qj

w
(x)
e′ . This continues until either 1 unit of water has been output by Qj (the constraint

x(Qj) = 1 becomes tight) or no more water can be output because every e ∈ Qj has water level

w
(x)
e = 1 (each such e is part of a tight constraint x(S) = f(S)). The algorithm then moves onto

the next arriving part and repeats the process. We use a primal-dual analysis to prove that the
algorithm is (1− 1/e)-competitive.
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4.1 Analysis

We proceed with a primal-dual analysis to prove Theorem 1.1 for fractional online matroid inter-
section. The dual program is:

min Lf (γ) +
n∑

j=1

βj

s.t γe + βj(e) ≥ 1, for all e ∈ E

γ, β ≥ 0.

where Lf is the Lovász extension of f , and j(e) is defined such that e ∈ Qj(e). We will construct a
set of dual variables based on the primal allocation. Specifically, upon each arrival of Qj , we start
by setting βj = 0. Then upon each infinitesimal increase of xe by dxe for e ∈ Qj , we increase γ to
maintain

γe′ := G(we′) for all e′ ∈ E

and increase βj by
dβj := (1− g(we))dxe.

where g(x) := ex−1, and G(x) :=
∫ x
0 g(t) dt = ex−1 − e−1. Observe that since the algorithm only

increases the primal allocation x, by Proposition 3.4 the dual variables also only increase as the
algorithm progresses.

To show a 1 − 1/e competitive ratio, we need to show (1 − 1/e)-approximate feasibility of the
dual, and that the dual increase is at most the primal increase.

4.1.1 Approximate Feasibility

We will show that, immediately after the allocation to Qj completes, we have γe+βj ≥ 1− 1/e for
all e ∈ Qj . Since dual values only increase as the algorithm progresses, this would imply inequality
also holds for the final dual values.

Let w∗ = mine∈Qj w
(x)
e be the minimum water level of an element of Qj immediately following

the allocation to Qj . We claim that βj ≥ 1− g(w∗). To see this, notice that dβj ≥ (1− g(w∗))dxe
at each point in time during the allocation, so we clearly have βj ≥ (1 − g(w∗))

∑
e∈Qj

xe. If∑
e∈Qj

xe = 1, we have our claim. Otherwise, every e ∈ Qj must be involved in a tight offline

constraint, so w∗ = 1. In this case, 1− g(w∗) = 0 ≤ βj .
Using this claim, we easily obtain for each element e ∈ Qj ,

γe + βj ≥ G(we) + 1− g(w∗) ≥ G(we) + 1− g(we) = 1− 1/e.

4.1.2 Primal equals Dual

To show that the primal objective equals the dual objective, we will show that the rate of change in
primal and dual objectives are equal at each instant in the continuous allocation. In the allocation
to Qj , when xe receives infinitesimal allocation dxe, the change in the primal objective is exactly
dxe.

Meanwhile, the change in dual objective is d(Lf (G(w(x))))+dβj . By Lemma 3.8, we know that
d(Lf (G(w(x)))) = g(we)dxe, and by definition of βj we have dβj = (1− g(we))dxe. Hence, we have
that the change in dual is also g(we)dxe + (1− g(we))dxe = dxe.
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4.1.3 Proof of the Main Theorem

The above discussion immediately gives the proof of the main theorem:

Proof of Theorem 1.1 for online matroid intersection. Let x be the primal allocation given by water-
filling, and γ, β the associated dual assignment defined above. Since we showed that at each step
of the algorithm, ∆Primal ≥ ∆Dual, we have that

∑
e xe ≥ Lf (γ) +

∑
j βj . By approximate feasi-

bility, we have that γ′ := e
e−1 · γ and β′ := e

e−1 · β together form a feasible dual solution. Finally,

positive homogeneity7 of the Lovász extension and duality together give∑
e

xe ≥ Lf (γ) +
∑
j

βj

=

(
1− 1

e

)
·
(
Lf (γ

′) +
∑
j

β′
j

)

≥
(
1− 1

e

)
· OPTDual =

(
1− 1

e

)
· OPT.

5 General Online Submodular Assignment

In order to motivate our algorithm for online SAP, it will be useful to adopt an economics perspective
similar to that presented in [BM08]. We think of each online arrival j as a bidder and each offline
element e ∈ E as a good. Each bidder j desires at most one unit of goods from the set Qj , and
receives utility ve for each unit of good e received. We, as the seller, allocate a quantity xe of good
e to bidder j for each e ∈ Qj , but we are also limited the supply constraints bx(S) ≤ f(S) for each
S ⊆ E. Our goal is to maximize the welfare

∑
e∈E vexe.

In this setting, it will be important to discriminate between items based on their “bang-per-
buck” ve

be
. This is due to the fact that, with free disposal, it can be beneficial to discard an allocation

with small bang-per-buck in order to make space for a higher value item. To this end, for t ≥ 0
define the vector wt to be

wt := w((bexe)e : ve/be≥t),

i.e. the water levels of items when only considering allocations on item e with bang-per-buck at
least t.

Using this definition, we give a pricing-based algorithm for allocating xe values. For each e ∈ E,
we place an instantaneous per-unit price on e of

pe := be ·
∫ ve/be

0
g(wt

e)dt.

Then, upon the arrival of Qj , bidder j will continuously “purchase” an infinitesimal amount
dxe of good e, for some e ∈ Qj which has highest marginal utility, i.e. e ∈ argmaxe′∈Qj

(ve′ − pe′).
If e is not part of any tight set, then we may increase it freely. Otherwise, in order to accommodate
the new increase to xe, we will decrease the allocation in ealt by dxealt = − be

bealt
· dxe, where

ealt ∈ argmin
e′

{
ve′

be′
: e′ ∈

⋂
S∋e

bx(S)=f(S)

S

}
.

7Lf (λx) = λLf (x) for λ ≥ 0. This follows from the definition of Lovász extension.
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In other words, ealt is the lowest bang-per-buck element that, upon decreasing xealt , creates
space for an increase in xe. Note that the choice of ealt is always non-empty as it contains e. This
continues until either 1 unit of good is allocated to Qj (the constraint x(Qj) = 1 becomes tight)
or no good produces positive utility (ve = pe for each e ∈ Qj). The algorithm then moves onto the
next arriving part and repeats the process.

5.1 Analysis

We proceed with a primal-dual analysis to prove Theorem 1.1. Recall the dual program from
Section 2:

min Lf (γ) +
n∑

j=1

βj

s.t be · γe + βj(e) ≥ ve, for all e ∈ E

γ, β ≥ 0.

Upon each arrival of Qj , we start by setting βj = 0. Then upon each infinitesimal increase of xe
by dxe for e ∈ Qj , we maintain

γe′ :=

∫ ∞

0
G(wt

e′) dt for all e′ ∈ E

and increase βj by

dβj := (ve − pe)dxe = be

(∫ ve/be

0
(1− g(wt

e))dt

)
dxe.

where g(x) := ex−1, and G(x) :=
∫ x
0 g(t) dt = ex−1 − e−1.

5.1.1 Approximate Feasibility

The goal is to show that immediately after the allocation to Qj completes, we have beγe + βj ≥
(1−1/e)ve for all e ∈ Qj . Again, by monotonicity of water levels (Proposition 3.4) the dual variables
also only increase as the algorithm progresses, so this implies the approximate feasibility for the
final dual values.

We denote u∗ = maxe∈Qj (ve − pe) to be the maximum marginal utility of an element of Qj

immediately following the allocation to Qj . We claim that βj ≥ u∗. At every point during the
allocation, dβj ≥ u∗dxe, so clearly βj ≥ u∗

∑
e∈Qj

xe. If
∑

e∈Qj
xe = 1 and we have our claim.

Otherwise, we must have reached zero marginal utility during our allocation, so u∗ = 0, in which
case βj ≥ u∗ trivially.

Using this bound on βj , we conclude

beγe + βj ≥ be

∫ ∞

0
G(wt

e) dt+ u∗ ≥ be

∫ ve/be

0

(
G(wt

e) + 1− g(wt
e)
)
dt = ve(1− 1/e).

for each element e ∈ Qj .
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5.1.2 Primal exceeds Dual

We will show the primal exceeds the dual by instead dealing with a “dual surrogate” which upper
bounds the dual value.

Lf (γ) = Lf

(∫ ∞

0
G(wt) dt

)
≤
∫ ∞

0
Lf (G(wt)) dt

The left hand term is precisely the γ term in the dual objective. We call the right hand term the
γ term of the “dual surrogate”. The inequality follows from Jensen’s inequality and the convexity
of Lf .

We will show that the rate of change in primal and dual surrogate objectives is equal at each
instant in the continuous allocation. In the allocation toQj , when xe receives infinitesimal allocation
dxe, note that xealt is infinitesimally reduced by be

bealt
·dxe. Hence, the change in the primal objective

is be(ve/be − vealt/bealt)dxe.
Meanwhile, the change in surrogate dual objective is

∫∞
0

(
dLf (G(wt)

)
dt+dβj . Using the chain

rule lemma for water levels (Lemma 3.8) with the fact that wt = w((bexe)e:ve/be≥t), we know that

d(Lf (G(wt)) =

{
g(wt

e)be · dxe vealt/bealt ≤ t ≤ ve/be

0 otherwise.

To see why d(Lf (G(wt)) is only non-zero for t ∈ [vealt/bealt , ve/be], observe that if t > ve/be, then
clearly xe’s value does not effect w

t. On the other hand, if t < vealt/bealt , we claim the water level of
xe remains 1 while deallocating ealt and allocating e. Recall ealt was chosen as the minimum bang-
per-buck element in Stight =

⋂
tight S ∋ e S. Note that Stight is itself a tight set, one that remains

tight if we restrict our allocation to elements of bang-per-buck at least t. Stight also remains tight
while shifting mass from ealt to e. Thus, the water level vector wt remains identical.

By definition of βj we have dβj = be

(∫ ve/be
0 (1− g(wt

e))dt
)
dxe. Hence, in total, we have that

the change in surrogate dual is∫ ∞

0

(
dLf (G(wt)

)
dt+ dβj = be

(∫ ve/be

vealt/bealt

g(wt
e)dt

)
dxe + be

(∫ ve/be

0
(1− g(wt

e))dt

)
dxe.

Notice that wt
e = 1 when t ≤ vealt/bealt , so we have (1 − g(wt

e)) = 0 for such t. Using this, we can
simplify the change in surrogate dual as

be

(∫ ve/be

vealt/bealt

g(wt
e)dt

)
dxe + be

(∫ ve/be

vealt/bealt

(1− g(wt
e))dt

)
dxe = be

(
ve
be
− vealt

bealt

)
dxe.

The above discussion applied to an argument identical to that of Section 4.1.3 immediately
gives the proof of the main theorem.

5.2 Integral Algorithm under Small Bids Assumption

So far, we analyzed a fractional algorithm for online SAP and showed that it gets a 1−1/e competitive
ratio. Now, we will show that a similar algorithm and analysis applies to integral SAP under a small
bids assumption. To illustrate the key ideas, in this section we will only examine the AdWords
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version of SAP (in other words, when be = ve for all e ∈ E). The AdWords version of SAP does
not require free disposal, which makes the analysis simpler.

Recall the small bids assumption for SAP:

Assumption 1.2 (Small Bids). Assume there exists some ε > 0 such that for all e ∈ E and T ⊆ E
with fT ({e}) > 0, we have be ≤ εfT ({e}).

The small bids assumption allows us to prove the following lemma, which essentially states that
the water level is an ε-Lipschitz function of the allocation. Intuitively, this is useful because it
means that selecting any single element can at most increase the water levels by ε, which allows for
an analysis that approximates the fractional case. Indeed, when we analyze the integral algorithm
under the small bids assumption, we will only use Lemma 5.1, and not use Assumption 1.2 directly.

Lemma 5.1 (Water Levels are Lipschitz). Suppose Assumption 1.2 holds. Let x ∈ RE
≥0 and suppose

y = x+ t1e for some t ≥ 0 and e ∈ E. Then we have∥∥∥w(bx) − w(by)
∥∥∥
∞
≤ εt.

Proof. Note that since y ≥ x, we have w(by) ≥ w(bx) by monotonicity (Proposition 3.4). Further-
more, by locality (Proposition 3.7), since y is obtained from x by increasing the allocation on a
single coordinate e, the element whose water level increased the most is that of e itself. Thus it

suffices to show that w
(by)
e ≤ w

(bx)
e +εt. From the definition of water levels (Definition 3.1), we have

w(bx)
e := max

S∋e
min
T⊆E

fT ({e})̸=0

bx(S \ T )
fT (S)

.

Let Sx and Tx be the sets that attain the above maxmin for w
(bx)
e . Analogously, define Sy and Ty

to be the sets that attain the maxmin for w
(by)
e . Then

w(by)
e =

by(Sy \ Ty)

fTy(Sy)
≤ by(Sy \ Tx)

fTx(Sy)

=
bx(Sy \ Tx)

fTx(Sy)
+

b(y − x)(Sy \ Tx)

fTx(Sy)

≤ bx(Sx \ Tx)

fTx(Sx)
+

b(y − x)(Sy \ Tx)

fTx(Sy)

= w(bx)
e +

b(y − x)(Sy \ Tx)

fTx(Sy)
.

Since y − x = t1e, we have

b(y − x)(Sy \ Tx)

fTx(Sy)
≤ tbe

fTx(Sy)
≤ tbe

fTx({e})
≤ tε.

Here, the second inequality is because e ∈ Sy and f is monotone, and the last inequality is by the
small-bids assumption.
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With Lemma 5.1 in hand, we are now ready to analyze integral online SAP under the small-bids
assumption.

Theorem 1.3. Under the small bids assumption (Assumption 1.2), there is a deterministic integral
algorithm for online SAP which is (1− ε)2 ·

(
1− 1

e

)
-competitive.

Proof of Theorem 1.3 . Define f ′(S) := (1 − ε)f(S). Since f is monotone and submodular, so is
f ′. In this proof, all water levels will be with respect to f ′, unless explicitly noted otherwise.

Consider the following integral algorithm:

1. Initialize x = 0. (x is the integral allocation to be returned.)

2. Upon the arrival of part j, pick

ej ∈ argmax
{
be

(
1− g(w(bx)

e )
)
: e ∈ Qj , w

(bx)
e < 1

}
.

3. Update x← x+ 1ej . (If there is no e ∈ Qj with w
(bx)
e < 1, leave x unchanged.)

The idea here is the same as the fractional algorithm: always select the item with the highest utility.
The only difference is that we are artificially scaling down the capacity constraints by a factor of
1 − ε. The reason for this is to ensure that the allocation returned by the integral algorithm is
always feasible to the original problem. Indeed, since the integral algorithm only allocates items
whose water level (with respect to f ′) is less than 1, Lemma 5.1 and locality (Proposition 3.7)
imply that the final water levels (again, under f ′), are at most 1 + ε. Since f ′ = (1 − ε)f , this
implies that the final water levels of the allocation with respect to the original function f are at
most (1+ ε)(1− ε) < 1, which by indication of feasibility (Proposition 3.5) means that the integral
algorithm is guaranteed to produce a feasible solution.

Having seen that the solution returned by the integral algorithm is always feasible, we now
proceed to bound its competitive ratio. We recall the primal and dual LPs (with capacity constraints
given by f ′) below:

max
∑
e

bexe min Lf ′(γ) +
∑
j

βj

s.t.
∑
e∈Qj

xe ≤ 1 ∀ j s.t. beγe + βj(e) ≥ be ∀e ∈ E

∑
e∈S

bexe ≤ f ′(S) ∀ S ⊆ E γ, β ≥ 0.

xe ≥ 0 ∀e ∈ E

Setting the dual variables. Consider the arrival of part j. Let x denote the allocation right
before j arrives, and let x′ denote the allocation right after j arrives. After j makes its allocation,
we update the dual variables as follows:

• γe = G(w
(bx′)
e ) for all e ∈ E.

• βj = max{0,max{be(1− g(w
(bx)
e )) : e ∈ Qj}}.

Note that the values of γe are updated in each iteration, whereas the values of βj are updated
once in iteration j and then remain unchanged forever. Moreover, note that the dual variables are
non-decreasing throughout the course of the algorithm, because the water levels are non-decreasing
and g is an increasing function.
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Approximate dual feasibility. Consider any e ∈ E, and let j = j(e). Let x denote the final
allocation of the algorithm. Then,

beγe + βj = beG(w(bx)
e ) + βj

(a)

≥ beG(w(bx)
e ) + be(1− g(w(bx)

e ))
(b)
=

(
1− 1

e

)
be.

Here, (a) uses the fact that the water levels are non-decreasing throughout the course of the
algorithm, and g is increasing. (b) is using the definition of g(t) = et−1.

Change in primal vs. change in dual. The last thing we need to show is that the value of
the algorithm is not too small compared to the value of the dual solution. To do this, we compare
the change in the primal to the change in the dual in each iteration.

Consider the arrival of part j. Let x denote the algorithm’s allocation right before j arrives.
There are two cases: Either the algorithm selects an element or it does not. If the algorithm does
not select any element, then ∆P = 0. Moreover, the only reason the algorithm did not select an

element is if w
(bx)
e ≥ 1 for all e ∈ Qj . This implies βj = 0. Since γ also does not change in this

case, we have ∆D = 0.
It remains to consider the case where the algorithm selects an element ej in part j. Let x′ =

x+ 1ej be the algorithm’s allocation after j’s arrival. Then, on the one hand we have

∆P = bej .

On the other hand, we have

∆D = βj + Lf ′(γ′)− Lf ′(γ),

where γ = G(w(bx)) and γ′ = G(w(bx′)). Since element ej was selected, we know

βj = bej (1− g(w(bx)
ej )).

Also,

Lf ′(γ′)− Lf ′(γ)

= Lf ′(G(w(bx′)))− Lf ′(G(w(bx)))

=
〈
∇zLf ′(G(w(bz))), x′ − x

〉
(for some z ∈ [x, x′], by Mean Value Theorem)

=
〈
bg(w(bz)), x′ − x

〉
(by Lemma 3.8)

= bejg(w
(bz)
ej )

≤ bej

(
g(w(bx)

ej ) +
ε

1− ε

)
(by Lemma 5.1 and f ′ = (1− ε)f)

Thus,

∆D ≤ bej

(
1 +

ε

1− ε

)
=

1

1− ε
∆P.
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Final Competitive Ratio. To conclude, we have

ALG = P ≥ (1− ε)D ≥ (1− ε)2
(
1− 1

e

)
OPT.

Here, the first inequality is because ∆P ≥ (1− ε)∆D in each time step. For the second inequality,
the 1− 1

e factor comes from approximate dual feasibility, and the 1− ε factor comes from the fact
that we performed the primal-dual analysis on the problem with capacities scaled down by 1 − ε,
which reduces the optimal value by a factor of at most 1− ε.

6 Online Submodular Welfare Maximization for Matroidal Utili-
ties

In this section, we give a (1− 1/e)-competitive algorithm for the Online Submodular Welfare Max-
imization problem where the utility function of each agent is the rank function of a matroid.

Formally, there are n agents, and m items. The items arrive one at a time online. Each agent
has an associated utility function fi : 2

[m] → Z≥0 which is the rank function of a matroid Mi on
ground set [m]. In each time step, we must irrevocably assign the arriving item to some agent.
Suppose items Ui ⊆ [m] have been assigned to agents i ∈ [n]. Then the welfare of this allocation is∑

i∈[n]

fi(Ui).

The goal is to assign items to maximize welfare, as compared to the optimal offline allocation.
We work in the value oracle model, where we can query the value fi(S) for any i ∈ [n] and S ⊆ [m]
in constant time.

Our algorithm extends to the setting where each agent has a non-negative weight ai. In this
case, the utility function of each agent is fi := ai · rankMi .

6.1 The Matroidal Ranking Algorithm

First, some notation. For an allocation of items to agents, we will denote by Ui the set of items
assigned to agent i. Given such an allocation, we say that an item j is available to agent i if
fi(Ui + j) > fi(Ui).

The algorithm proceeds as follows. Independently for each agent i, select ri uniformly at random
from [0, 1]. Let the priority of agent i be defined as ai · (1 − g(ri)), where g(z) := ez−1. When an
item arrives, consider the set of agents to whom this item is available, and assign the item to the
highest priority agent among these. See Algorithm 3 for a formal description.

Remark 6.1 (Perusal perspective). We note that the Matroidal Ranking Algorithm yields the same
allocation as the following procedure. In order of decreasing priority, each agent “peruses” the full
set of items in their arrival order, and greedily picks any item which increases its utility. While this
perusal perspective cannot be implemented online, it yields an identical allocation as the Matroidal
Ranking Algorithm, and will be useful for the analysis.
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Algorithm 3: Matroidal Ranking Algorithm

input : An instance of Matroid-OSWM with agents i ∈ [n], items [m], and utility
functions fi : 2

[m] → Z≥0.
output: An allocation of items Ui ⊆ [m] to each agent i with welfare at least (1− 1

e ) times
the welfare of the optimal offline allocation.

1 Select a value ri ∈ [0, 1] uniformly and independently for each agent, and set the priority of
agent i to be ai(1− g(ri)).

2 When an item j arrives, assign it to the highest priority agent to whom it is available.
3 return the resulting allocation Ui.

6.2 Analysis

Consider the primal and dual problems below. The primal has variables xij representing to what
extent item j ∈ [m] is allocated to agent i ∈ [n]. Notice that in the primal, rather than directly
optimizing for the welfare of the agents, we simply maximize the total (weighted) quantity of items
assigned, while the constraints enforce that each agent receives an independent set of items with
respect to their matroid. Furthermore, there are constraints for each item enforcing that each is
assigned at most once. Thus, an integer binary solution to the primal corresponds to a feasible
allocation with objective value equal to the welfare of the allocation.

max
∑
i∈[n]

(
ai ·
∑

j∈[m] xij

)
min

∑
i∈[n]

∑
S⊆[m]

fi(S)αi,S +
∑
j∈[m]

βj

s.t. x(S) ≤ fi(S), ∀i ∈ [n], S ⊆ [m] s.t.
∑

S∋j αi,S + βj ≥ ai, ∀i ∈ [n], j ∈ [m]∑
i∈[n] xij ≤ 1, ∀j ∈ [m] α, β ≥ 0

x ≥ 0

Consider the primal solution x induced by the allocation at the end of the Matroidal Ranking
algorithm. This x depends on the random values ri which were chosen for each agent. We will
construct a dual solution (α, β) whose objective value is the same as that of x, and which is
approximately feasible in expectation. In particular, we will have

Ew∼[0,1]n

∑
S∋j

αi,S + βj

 ≥ (e− 1

e

)
· ai

for each (i, j) ∈ [n] × [m]. This implies that the scaled up solution ( e
e−1)(α, β) is feasible in

expectation, and that x is ( e−1
e )-approximately optimal.

Dual Assignment We now define the dual solution (α, β). For each agent i ∈ [n], if Ui is the
set of items assigned to agent i at the end of the algorithm, let Si := spanMi

(Ui) be the span of Ui

with respect toMi (i.e. the largest set of items containing Ui whose rank is equal to rankMi(Ui)).
We assign αi,Si := ai · g(ri). For each item j, if j ∈ Ui for some i ∈ [n], we set βj := ai · (1− g(ri)).
The remaining variables are set to zero.
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Primal = Dual The dual solution described above has objective value equal to the primal
solution returned by the algorithm. To see this, note that whenever an item is assigned to an agent
i, the objective value of the dual increases by exactly ai. Furthermore, since we only assign an item
to an agent if it is available to them, the primal objective value increases by ai as well.

Expected Approximate Feasibility We now show that the dual solution is approximately
feasible in expectation. Fix a particular agent-item pair (̂i, ĵ). We will focus on the dual constraint∑

S∋ĵ αî,S +βĵ ≥ âi. First, condition on all random choices ri for i ̸= î. We denote these choices by
r−î. Note that, once r−î is fixed, the run of the algorithm is determined by the value of r̂i. Hence,
for any choice rA ∈ [0, 1] we will denote a run of the algorithm in which r̂i = rA as A.

For an agent i ∈ [n] and run A of the algorithm with r̂i = rA ∈ [0, 1], let U
(A,t)
i ⊆ [m] denote

the set of items assigned to agent i at time step t of run A of the algorithm. Likewise, let U
(A)
i

denote the set of items assigned to agent i at the end of run A of the algorithm. We will also write

span(U
(A,t)
i ) to mean spanMi

(U
(A,t)
i ), the span in agent i’s matroid of the set of items assigned to

agent i (and similarly for span(U
(A)
i )).

We now define the critical threshold r∗ to be maximum value of r̂i such that ĵ is in the span of

the items assigned to î in the final allocation. Formally,

r∗ := sup
{
rA ∈ [0, 1] : ĵ ∈ span

(
U

(A)

î

)}
.

We define sup(∅) = 0 by convention.
The following key lemma characterizes several invariants that hold throughout the Matroidal

Ranking algorithm. Specifically, it describes how the span(U
(A,t)
i ) changes as rA changes. This will

allow us to lower bound the expected amount of dual value assigned during the procedure.

Lemma 6.2. Fix r−î, and values rA and rB in [0, 1] with rA < rB. Consider the two separate runs
of the algorithm: A with r̂i = rA and B with r̂i = rB. Then at each iteration t, we have

(1) span(U
(A,t)

î
) ⊇ span(U

(B,t)

î
),

(2) span(U
(A,t)
i ) = span(U

(B,t)
i ) for all i ∈ [n] with ri ≤ rA,

(3) If rB = 1, then span(U
(A,t)
i ) ⊆ span(U

(B,t)
i ) for all i ̸= î.

Proof. Points (1) and (2) follow from the perusal perspective of Algorithm 3. In particular, for
point (1), agent î only peruses earlier in run A than in run B, so î has more items to choose from

in run A. For the tth item j, if j ∈ U
(B,t)

î
and it was not already spanned by U

(A,t−1)

î
, then it would

be chosen by î in step t of run A. So U
(B,t)

î
⊆ span(U

(A,t)

î
), which implies point (1).

For point (2), the perusal of all agents i with ri < rA is identical in both runs A and B of the

algorithm, so in particular, U
(A,t)
i = U

(B,t)
i , implying point (2).

We prove point (3) by induction. Let rB = 1. Suppose for induction (3) holds at iteration t,

and a new item j arrives. Consider some i ̸= î. First, if j ∈ span(U
(B,t)
i ) already at time t, then

we have by induction

span(U
(A,t+1)
i ) ⊆ span

(
span(U

(A,t)
i ) ∪ {j}

)
⊆ span(U

(B,t+1)
i )
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as desired.
So suppose otherwise that j ̸∈ span(U

(B,t)
i ). This means that in run B, when item j arrives, it

is available to agent i. For the invariant in point (3) to break, item j must be assigned to i in run
A but not assigned to i in run B. If j is not assigned to i in run B, it must be assigned to some
other i′ with ri′ < ri (since when j arrives, it is available to agent i). In particular, since r̂i = 1,
we know i′ ̸= i and we may apply induction to i′. This tells us that at time t (before j’s arrival),

span(U
(A,t)
i′ ) ⊆ span(U

(B,t)
i′ ), and therefore in run A, item j was also available to i′. Since ri′ < ri,

this contradicts that j is assigned to i in run A.

This yields the following pair of corollaries.

Corollary 6.3. If r̂i < r∗, then ĵ ∈ span(Uî)

Proof. This follows directly from the definition of r∗, and point (1) from Lemma 6.2.

Corollary 6.4. If r∗ < 1, then item ĵ is always assigned to an agent i with ri at most r∗.

Proof. Observe first that for any ε > 0, if r̂i = r∗ + ε ≤ 1 then item ĵ is assigned to some agent i

with ri < r∗ + ε. This is because r̂i > r∗ implies both that item ĵ is available to î when it arrives,

and that it is not assigned to î. Since this holds for every ε > 0 yet there are only finitely many
agents, there is some such i =: i∗ with ri∗ ≤ r∗, and some ε∗ > 0 such that ĵ is assigned to i∗ when
r̂i = r∗ + ε∗.

Now we claim that for any value of r̂i, item ĵ is always available to i∗ when ĵ arrives. This implies
the claim. First, we compare instance A of the algorithm with r̂i = rA := r∗ + ε∗ to any instance

B with r̂i = rB > r∗ + ε∗. By Lemma 6.2(2) applied to i∗, we have span(U
(A,t)
i∗ ) = span(U

(B,t)
i∗ ) at

the time t when ĵ arrives. So, in particular, ĵ is available to i∗ in instance B, since it’s available in
instance A.

Since the above holds for any rB > r∗ + ε, it in particular holds for rB = 1. Now we apply
Lemma 6.2(3) to i∗ on any instance A with r̂i = rA < 1 and instance B with r̂i = rB = 1. We have

span(U
(A,t)
i∗ ) ⊆ span(U

(B,t)
i∗ ) at time t when ĵ arrives. Therefore, again, since i∗ is available to ĵ in

instance B, it is also available in instance A.
So in all cases, ĵ is available to i∗ (with ri∗ ≤ r∗) when it arrives. So ĵ is always assigned to an

agent i with ri at most r∗.

This gives us all ingredients required for the final proof that the Matroidal Ranking algorithm
achieves a (1− 1/e)-competitive ratio.

Proof of Theorem 1.4. Let x be the primal solution given by the Matroidal Ranking algorithm,
and (α, β) the corresponding dual solution described above. We showed that the primal and dual
objectives are equal:

∑
i(ai ·

∑
j xij) =

∑
i,S fi(S)αi,S +

∑
j βj . To argue that x is (1 − 1/e)-

competitive in expectation with the offline optimal primal solution, it then suffices by duality to
show that, in expectation, α, β are approximately feasible.

For any fixed agent-item pair (̂i, ĵ), we condition on the values of r−î, and let r∗ be the critical
threshold. Then Corollary 6.3 implies that

Er̂i∼[0,1]

[∑
S∋ĵ

αî,S

∣∣∣∣ r−î

]
≥
∫ r∗

0
âi · g(z) dz = âi ·

(
g(r∗)− 1

e

)
.
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Similarly, Corollary 6.4 implies that

Er̂i∼[0,1]

[
β ĵ

∣∣∣∣ r−î

]
≥
∫ 1

0
âi · (1− g(r∗)) dz = âi · (1− g(r∗)).

(note if r∗ = 1, then the RHS is 0, so the inequality still holds, despite Corollary 6.4 not applying).
The sum is then âi · (1− 1/e), and since this does not depend on the conditional values of r−î, we
may drop the conditioning to get

Ew∼[0,1]n

[∑
S∋ĵ

αî,S + β ĵ

]
≥ âi ·

(
1− 1

e

)

as desired.
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A Proof for General Online SAP with Small Bids

For Theorem 1.3 when ve is not necessarily equal to be, we utilize free disposal. However, the
difficulty is that now, we must also dispose of allocations in an integral manner.
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To do this, we first define a fractional algorithm which will increase x in integer increments, but
will be allowed to decrease x by fractional amounts. This fractional algorithm will follow a similar
procedure to the algorithm in Section 5, but with the following changes.

• We replace the function f with f ′ := (1− ε)f , i.e. decreasing our budget uniformly by a 1− ε
factor. We also consider water levels w(x) with respect to f ′, and update the definitions of
pe, γ, βj accordingly.

• Immediately after j arrives, we pick

ej ∈ argmax
e∈Qj

(ve − pe),

and continuously increment only xej until 1 unit of mass has been allocated.

• At each moment in time that xej is being incremented by a small amount dxej , if w
(bx)
ej = 1

we pick

ealt ∈ argmin


ve
be

: e ∈
⋂
S∋ej

bx(S)=f ′(S)

S

 ,

and decrease xealt by dxealt = −
bej
bealt

x. To prevent multiple choices of ealt being possible, we

perturb the ve values so that ve/be is distinct for each e ∈ E. Notice ealt may change over
the course of allocating to xej , but ej itself does not change.

This algorithm obtains a (1−O(ε))(1− 1/e) approximation of OPT, the optimal fractional solution,
by a corresponding analysis to that in Section 5.2. However, it may be the case that we still have
fraction values in x, as some xe values may have been partially decreased.

To adapt this into an integral allocation, we do this following. As we receive part j online,
we run the above fractional algorithm, storing the resulting allocation in an auxiliary vector x̂.
Meanwhile, we generate our true allocation x as follows:

1. Set xej = 1 for ej chosen by the fractional algorithm.

2. For any x̂ealt which was decreased to 0, we set xealt = 0.

In other words, we only integrally dispose of xealt if the fractional algorithm completely decreases
x̂ealt to 0, leaving all partially decreased allocations at value 1.

Clearly, this is an integral allocation x ∈ {0, 1}E with value∑
e∈E

vexe ≥
∑
e∈E

vex̂e ≥ (1−O(ε))(1− 1/e)OPT.

We claim also that this allocation has w
(bx)
e ≤ 1

1−ε for all e ∈ E. This would imply that x is feasible
with respect to our original submodular function f , as we would have for all S ⊆ E,

x(S) ≤ 1

1− ε
f ′(S) = f(S).

To show this claim, consider the state of the algorithm immediately after allocating to Qj . We
use the following, proven later.
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Lemma A.1. The fractional allocation x̂ is an optimal solution to the LP

max{
∑
e

veze : z ∈ Pf ′ , z ≤ x}.

Assuming this claim, let e1, . . . , ek ∈ E be the elements where x̂ei < xei . Moreover, label these

elements so that
ve1
be1

> · · · > vek
bek

. Notice that w
(bx̂)
ei = 1 for all i, which implies maxe∈E w

(bx)
e =

maxi∈[k]w
(bx)
ei by Proposition 3.7.

Let ∅ = T0 = T1 ⊆ · · · ⊆ Tk be sets such that for i ≥ 1, Ti is maximal such that

Ti ∈ argmin
T

{
f ′(T ) : T ∋ ei,

bx(T \ Ti−1)

f ′
Ti−1

(T )
= 1

}
.

In other words, all Ti are tight sets for x̂ in Pf ′ , and Ti is the smallest (as in f ′(T )) such extension
of Ti−1 that includes ei.

Claim A.2. ei′ ̸∈ Ti for i′ > i.

Proof. Assume the claim is false. Take the least i such that there exists ei′ ∈ Ti for some i′ > i.

Now for some small δ > 0, consider the allocation vector x′ := x̂+ δ ·
(
1ei
bei
− 1ei′

bei′

)
this has x′ ≤ x,

and
∑

e vex
′
e >

∑
e vex̂e.

Moreover, we claim δ can be chosen so that x′ ∈ Pf ′ . This would mean x′ contradicts our
relation between x̂ and x. To see this claim, notice that we only fail if there is some S ⊆ E with
bx̂(S)
f ′(S) = 1 and ei ∈ S, but ei′ ̸∈ S. If this is the case, then the set T ′ := Ti ∩ (S ∪ Ti−1) has

T ′ ∋ ei,
bx̂(T ′)
f ′(T ′) = 1 (as tight sets are closed under union and intersection), and f ′(T ′) < f ′(Ti) (as

f ′(T ′) = x(T ′) ≤ x(Ti \ {xi′}) ≤ x(Ti) = f ′(Ti)). This contradicts the choice of Ti.

Intuitively, our plan is to show that sequentially increasing each x̂ei to xei = 1 does not affect
the water level for any ei′ with i′ > i. The small bids assumption then implies each such increase
does not create too high a water level in x. To this end, consider a sequence of vectors x̂ =
y(0), y(1), . . . , y(k) = x that interpolate from x̂ to x as follows. We set

y(i)e :=

{
xe e = ei′ , i

′ ≤ i,

x̂e otherwise.

Notice that y(i) only differs from x̂ on Ti, so Algorithm 1 and the construction of the Ti sets tell us

that w
(bx)
e = w

(by(i))
e for all e ̸∈ Ti. Hence, each ei, we have

• w
(by(i

′))
ei = w

(bx)
ei = 1 for all i′ < i.

• w
(by(i))
ei ≤ w

(by(i−1))
ei + ε

1−ε = 1
1−ε by our small bids assumption and f ′ = (1− ε)f .

• w
(by(i

′))
ei ≤ w

(by(i
′))

ei′ ≤ 1
1−ε for all i′ > i by the locality property Proposition 3.7.

Therefore, since y(k) = x, we have maxe∈E w
(bx)
e = maxiw

(bx)
ei ≤ 1

1−ε as desired.
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Proof of Lemma A.1. We will show that if a feasible point z in the LP is optimal if the following
property holds: For every e ∈ E, either

(1) ze = xe, or

(2) there is a set S ⊆ E with bz(S) = f ′(S) and e ∈ argmine∈S(
ve
be
).

Notice that x̂ has this property. Indeed, x̂e ̸= xe implies that the algorithm deallocates from x̂e at
some point, which occurs when e is the element with minimum ve

be
in a tight set S, which remains

tight throughout the remainder of the algorithm.
To show that a feasible vector z with these properties is optimal in the LP, consider the dual

LP:

min Lf ′(ξ) +
∑
e∈E

yexe

s.t. beξe + ye ≥ ve ∀e ∈ E

ξ, y ∈ RE
≥0.

We construct a dual solution as follows. For t ≥ 0, let St ⊆ E be the maximal subset of elements
such that bzt(St) = f ′(St), where zt := (ze)e : ve/be≥t is the vector z restricted to elements with
bang-per-buck at least t. Notice that St ⊇ Su for u ≥ t.

Then we set our dual values at

ξe = max{t ≥ 0 : e ∈ St},

ye = max{ve − beξe, 0}.
We claim that this is a feasible dual solution with objective

∑
e∈E veze, which implies the optimality

of z in the primal LP.
Note that feasibility of (ξ, y) is obvious, so we just need to check the dual objective. We have

Lf ′(ξ) =

∫ ∞

0
f ′({e : ξe ≥ t})dt =

∫ ∞

0
f ′(St)dt =

∫ ∞

0

(∑
e∈St

beze

)
dt =

∑
e∈E

beze·max{t ≥ 0 : e ∈ St}.

Thus, we see that Lf ′(ξ) =
∑

e∈E beξeze.
Let T = {e ∈ E : ye > 0}. Our property of z tells us that ze = xe for e ∈ T . Moreover, if e ̸∈ T ,

then beξe ≥ ve. However, in case beξe > ve, it must be the case that ze = 0, as

f ′(Sξe) ≥ bz(Sξe) ≥ bzξe(Sξe) + beze = f ′(Sξe) + beze.

Therefore, we can say that if e ̸∈ T , then beξeze = veze.
Finally, this allows us to compute

Lf ′(ξ) +
∑
e∈E

yexe =
∑
e∈T

(beξeze + yexe) +
∑
e̸∈T

(beξeze + yexe)

=
∑
e∈T

(beξeze + (ve − beξe)ze) +
∑
e̸∈T

(veze + 0)

=
∑
e∈T

veze +
∑
e̸∈T

veze

=
∑
e∈E

veze.
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B Laminar AdWords as a Case of Online SAP

In the AdWords problem, we have bidders known offline. Impressions j arrive online; bidder i bids
bij dollars for this impression. Each bidder i has budget Bi. When an impression arrives, we must
irrevocably allocate it to a bidder who may afford it. Our goal is to maximize revenue. Written in
terms of an linear program,

max
∑
ij∈E

bijxij

s.t
∑
j

bijxij ≤ Bi for all bidders i

∑
i

xij ≤ 1 for all impressions j

x ≥ 0.

In the laminar setting, we account for a laminar family L of budget constraints on the bidders.
Formally speaking, L is a laminar family over edges E, and each set S ∈ L has a budget constraint
of BS . The laminar AdWords linear program is

max
∑
ij

bijxij

s.t
∑
ij∈S

bijxij ≤ BS for all S ∈ L

∑
i

xij ≤ 1 for all impressions j

x ≥ 0.

We will show a single monotone submodular function f which captures these constraints.

Theorem B.1. Laminar AdWords may be captured as a case of online SAP.

Proof. Let

f(S) := min

{∑
T∈S

BT : S ⊆ L covers S

}
.

In other words, f(S) is the most restricted budget constraint on S imposed by L. A solution
satisfying the submodular assignment problem with f clearly satisfies the laminar AdWords linear
program. A solution to laminar AdWords linear program will also satisfy the submodular assign-
ment problem with f ; this follows from the fact that a minimizing sub-family S achieving f(S) will
be disjoint sets.

We move on to showing f is monotone and submodular. The former property is follows from
definition. So it remains to show f is submodular. Take S, T ⊆ E. We will show

f(S ∪ T ) ≤ f(S) + f(T )− f(S ∩ T ).
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Say S and T are realized by covers S and T respectively. Then, S ∪ T (here, we allow the union
family to contain duplicate sets) is clearly a cover for S ∪T . We will show a sub-family N ⊆ S ∪T
which covers S ∩T and moreover, S ∪T \N is still a cover for S ∪T . Proving this, we are left with

f(S ∪ T ) ≤ budget of (S ∪ T \ N )

= f(S) + f(T )− budget of (N )

≤ f(S) + f(T )− f(S ∩ T ).

So, it remains to find a set N satisfying (1) N covers S ∩ T and (2) S ∪ T \ N is still a cover
for S ∪ T . Let N be a collection of lowest level8 sets which covers S ∩ T . Clearly (1) is satisfied
with this definition of N . To see (2), note that elements in S ∩ T must be covered twice in the
family S ∪ T . Therefore, for any set A ∈ N , there exists a set B ∈ S ∪ T covering A. This implies
removing N from S ∪ T still leaves us with a cover for S ∪ T .

8The laminar family is partially ordered inclusion wise, where a set A is lower than B if A ⊆ B.
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