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Abstract. These notes give a self-contained exposition of Karlin, Mathieu and Nguyen’s []
tight estimate of the integrality gap of the sum-of-squares semidefinite program for solving
the knapsack problem. They are based on a sequence of three lectures in CMU course
on Advanced Approximation Algorithms in Fall’21 that used the KMN result to introduce
the Sum-of-Squares method for algorithm design. The treatment in these notes uses the
pseudo-distribution view of solutions to the sum-of-squares SDPs and only rely on a few
basic, reusable results about pseudo-distributions.

1. Approximating Knapsack

1.1. The Knapsack Problem. We’re given n items, each item i accompanied with a ca-
pacity ci ≥ 0 and a value vi ≥ 0. We are allowed to pick a set of items with total capacity
at most C, and the goal is to maximize the total value of the set of items we pick. In the
following, we will use OPT to denote the maximum total vlaue that we can collect by picking
any subset of items that satisfy the capacity constraint. OPT can then be computed using
the following integer program.

max
n∑

i=1

vixi

n∑
i=1

cixi ≤ C

xi ∈ {0, 1} ∀i ∈ [n].

The knapsack problem (and, in particular, the above integer program) is NP hard to solve
exactly.

By relaxing xi ∈ [0, 1] from xi ∈ {0, 1}, we obtain a linear program. While this basic
linear program does not give a good approximation ratio, it is easy to derive the following
upper bound on the LP value that is meaningful if the maximum value of any item is not
too large compared to the true optimum.

Lemma 1.1. Let LP-VAL = max
∑n

i=1 vixi as x varies over the set {|
∑

i≤n cixi ≤ C, and 0 ≤
xi ≤ 1∀i}. Then,

LP − V AL ≤ OPT +max
i∈[n]

vi.

In this note, we will analyze the integrality gap of a sequence of tighter semidefinite
programs that can be mechanically built from the above integer program via the sum-of-
squares method. Analyzing these relaxations is an excuse for us to introduce some basic
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methodology of dealing with the sum-of-squares SDP. In particular, instead of the traditional
vector programming view of SoS SDPs, we will use the pseudo-distribution view in these
notes. This view is helpful in inspiring both new SDP relaxations and their analyses for
several interesting problems in the past decade. While these applications are beyond the
scope of these notes, we refer the reader to the notes from a CMU course [?, ?] on this topic
from Fall 2020, a monograph [?] that focuses on the connections of this method to proof
complexity and the survey [?].

These notes are organized as follows. In Section 2, we will start with a different ineffi-
cient (in fact, even writing solutions down for this relaxation would be inefficient) program
to exactly compute solutions for knapsack. We will then consider a natural graded relax-
ation of this program whose solutions can be naturally viewed as relaxations of probability
distributions over the hypercube {−1, 1}n that we will define as pseudo-distributions.

2. Another Inefficient Program

The program in Section 1 asks for an integer assignment to the vector x that satisfies the
knapsack capacity constraint while maximizing the total value collected.

We now consider a new program, that we will call, the distribution program, that searches
for probability distributions over integer solutions – i.e., a probability distribution µ over
x ∈ {−1, 1}n maximizing the expected total value of items collected over all µ such that that
every point in the support of µ satisfies the knapsack capacity constraint.

Pseudo-distributions are relaxations of probability distributions. While they can be de-
fined on the solution space of any system of polynomial equalities and inequalities, in these
notes, we will restrict to the hypercube {−1, 1}n. Note that this is the solution space to the
system {x | x2

i = 1}.
Knapsack, along with many other combinatorial problems (max-cut, etc.), can be reduced

to finding a maximum of a polynomial of a hypercube. In particular, we are interested in
the generalization (P)

max p(x)

s.t x ∈ {−1, 1}n

where p(x) is some polynomial. Consider the related problem (Q)

max Eµ(p(x))

s.t µ is a distribution over {−1, 1}n .

Clearly (Q) is a relaxation of (P). However, notice that for any distribution µ,

Eµ(p(x)) ≤ max
x∈supp(µ)

p(x)

and hence a distribution with singular support maximizes p(x). So, to solve (P) it is equiv-
alent to find a probability distribution with high expectation instead.

The classic way to think about a probability distribution is in terms of mass on elements
in {−1, 1}n. However, an equivalent way to think about probability distributions, is by
the moments i.e., the expectation of monomials XS =

∏
i∈S xi. Defining a distribution via

its support clearly defines the expectation of the monomials. The converse is true as well;
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namely, we may look at the indicator functions

χy(x) :=
∏

i|xi=1

(
1 + xi

2

) ∏
i|xi=−1

(
1− xi

2

)
and observe that for a fixed y ∈ {−1, 1}n,

Pµ(x = y) = Eµ(χy(x)).

Going back to our program (Q), once we have defined µ in terms of the monomials, we
have a liner objective function. It is easy to constrain

∑
x∈{−1,1}n µ(x) = 1 – this is a

single linear constraint. However, making sure all the moments are non-negative as they
are in a probability distribution would require exponential constraints. Hence, we settle for
a “pseudo-distribution”, or even better, a pseudo-distribution where some of the smaller
moments are positive.

Definition 2.1 (Pseudo-Distribution). A pseudo-distribution over {−1, 1}n is a function
D : {−1, 1}n → R such that

∑
x∈{−1,1}n D(x) = 1.

Unlike probability distributions, pseudo-distributions may take on negative values over
the support. We define various other probability terms for pseudo-distributions.

Definition 2.2 (Pseudo-Expectation ). The pseudo-expectation of a function f : {−1, 1}n →
R with respect to pseudo-distribution D over {−1, 1}n is

ẼD(f) :=
∑

x∈{−1,1}n
D(x) · f(x).

The pseudo-expectation of a probability distribution corresponds to the expectation of a
probability distribution.

Lemma 2.1 (Linearity). For two functions f, g : {−1, 1}n → R and a pseudo-distribution
D over {−1, 1}n,

ẼD(f + g) = ẼD(f) + ẼD(g).

Not only can we add two polynomials in a vector space, we can multiply two polynomials.
Multiplication is a bi-linear operation. Indeed, we can check ẼD(u · v) is a bilinear form
(in a vector space, this is analogous to a dot-product). This means that given a pseudo-
distribution D, there exists a matrix M such that

ẼD(u · v) = uTMv.

What does M look like? We have Mt(S, T ) = ẼD(XS△T ).

Definition 2.3. A pseudo-distribution D over {−1, 1}n is of degree d if for all polynomials
f of degree at most d/2, we have

ẼD(f
2) ≥ 0.

Hence, if D is a pseudo-distribution of degree d, we know that for all polynomials u of
degree less than or equal to d/2, uTMu ≥ 0. In particular, M restricted to the vector space
of polynomials of degree less than or equal to d/2 is positive semi-definite. Note that M is a(

n
d/2

)
×
(

n
d/2

)
dimension matrix.
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Theorem 2.2 (Cauchy-Schwartz). Let D be a pseudo-distribution of degree 2d on {−1, 1}n.
Then, for all polynomials of degree at most d,

ẼD(f · g) ≤
√
ẼD(f 2) ·

√
ẼD(g2).

Proof. The proof relies on observing that a natural argument for establishing the usual
Cauchy-Schwarz inequality extends, in general, to any positive semidefinite bilinear forms.
We include it in full for completeness.

Suppose first that ẼD(f
2) = 0. Since D is a degree 2d pseudo-distribution, for every

C > 0,

ẼD

(
Cf − g

C

)2
≥ 0.

Expanding out, this yields that

2ẼD(fg) ≤ ẼD(C
2f 2) + ẼD

(
g2

C2

)
=

1

C2
ẼD(g

2).

Letting C → ∞ gives ẼD[fg] ≤ 0. A similar argument starting with ẼD(Cf + g/C)2 ≥ 0

yields that −ẼD(fg) ≤ 0. Together, we conclude that ẼD(fg) = 0 completing the proof.

Let’s now assume that ẼD(f
2), ẼD(g

2) > 0. In this case, let

f̄ =
f√

ẼD(f 2)
, ḡ =

g√
ẼD(g2)

.

Then, we have ẼD(f̄+ḡ)2 ≥ 0 and thus, ẼD(f̄ ḡ) ≤ 1
2
ẼD(f̄

2+ḡ2) = 1. Rearranging yields that

ẼD(fg) ≤
√

ẼD(f 2)

√
ẼDg2 as desired. A symmetric argument starting with ẼD(f̄− ḡ)2 ≥ 0

yields that −ẼD(fg) ≤
√
ẼD(f 2)

√
ẼDg2. This completes the proof.

□

Note that the indicator function

χy(x) :=
∏

i|xi=1

(
1 + xi

2

) ∏
i|xi=−1

(
1− xi

2

)
is a degree n polynomial.

Corollary 2.3. A pseudo-distribution of degree 2n is simply a probability distribution.

2.1. A Brief Introduction to SDPs. Classical linear programming is often of the form

max cTx

Ax ≤ b

x ≥ 0,

We are maximizing cTx over the cone of non-negative vectors, subject constraints Ax ≤ b.
This is a special instance of conic programming. Similarly, semi-definite programs are trying
to maximize a function over the cone of positive semi-definite matrices.
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max C •X
A(x) ≤ b

x ⪰ 0,

where C ∈ Sn, A : Sn → Rm, and • refers to the Frobenius dot product.
As mentioned in the beginning of this survey, we often think about distributions as defined

by their moments. We introduce the natural generalisation to pseudo-distributions.

Definition 2.4 (Pseudo-moments). The degree t pseudo-moments of a pseudo-distribution
D are the set of numbers

{ẼD(XS) | |S| ≤ t}
i.e., the pseudo-expectations of monomials of degree at most t.

Now we have all the tools to understand how to guarantee a pseudo-distribution has degree
2t via semi-definite programming.

Lemma 2.4. The set {γS | |S| ≤ 2t}, where γ∅ = 1, are the pseudo-moments of a degree 2t
pseudo-distribution D on {−1, 1}n if and only if the matrix Mt defined by

Mt(S, T ) = ẼD(XS△T )

is positive semi-definite.

Proof. ⇐= : We define the pseudo-moments of D as follows -

ẼD(XS) =

{
γS |S| ≤ 2t

0 |S| > 2t
.

We first prove this is a pseudo-distribution. The only condition we need to check is that∑
x∈{−1,1}n D(x) = 1. Indeed,

∑
x∈{−1,1}n D(x) is just the moment of the empty set which

we enforce as equal to 0. Next, we have to prove that D is of degree at least 2t. Take a
function f of degree t. We express f as

f =
∑
S⊆[n]

f̂SXS =
∑

S⊆[n],|S|≤t

f̂SXS.

In terms of the moments basis, the vector representation of f (which belongs to the space of

polynomials of degree at most t) is clearly f̂ = (f̂S)S⊆[n],|S|≤t. Recall ẼD(f
2) = f̂TMtf̂ ≥ 0,

since Mt is positive semi-definite.
=⇒ : We prove Mt is positive semi-definite. This is almost identical to the last direction;

we need only show that f̂TMtf̂ ≥ 0 for all vectors f̂ is the space of polynomials of degree at
most t. Since f̂ corresponds to a polynomial of degree at most t, by definition of D being
degree at least 2t, we know that f̂TMtf̂ = ẼD(f

2) ≥ 0. □

2.2. Satisfying a Constraint. We showed in the last sub-section how an O(nt)×O(nt) PSD
matrices correspond to pseudo-distributions of degree 2t. So, finding a pseudo-distribution
which maximizes a certain objective function reduces to semi-definite programming. What
if we want to impose additional restrictions on the pseudo-distribution?
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Definition 2.5 (Equality Constraints on a Pseudo-distribution). A degree 2t pseudo-distribution
D on {−1, 1}n satisfies a constraint q(x) = 0 if

ẼD(q ·XS) = 0

for all |S| such that |S|+ deg(q) ≤ 2t. This is equivalent to the condition

ẼD(q · p) = 0

for all polynomials p such that deg(p) + deg(q) ≤ 2t.

One may interpret the condition ẼD(q · p) = 0 for all polynomials p(x) such that deg(p) ≤
2t− q as ⟨q, p⟩D = 0 for all vectors p in a subspace of dimension 2t− q. Indeed, in Euclidean
space a vector v satisfying the condition ⟨v, w⟩ = 0 for all vectors w, is equivalent to v = 0.

To encode inequality constraints, a bit more work has to be done.

Definition 2.6 (Inequality Constraints on a Pseudo-distribution). A degree 2t pseudo-
distribution D on {−1, 1}n satisfies a constraint q(x) ≥ 0 if the matrix Mq defined as

(Mq)S,T := ẼD(q(x) ·XS∆T )

for S, T of sizes at most t− deg(q)/2 is positive semi-definite. In other words,

ẼD(q(x) · f 2) ≥ 0

for all f of degree at most t− deg(q)
2

.

This condition is inspired from the following equivalent definition of a vector v in Euclidean
space being non-negative: v ≥ 0 if and only if ⟨v, w⟩ ≥ 0 for all w ≥ 0.

Remark 1. Here, we study what it means for a probability distribution (which has infinite
degree) µ on {−1, 1}n to satisfy a constraint q(x). Take the indicator function χy(x) which
takes on value 1 at y. Then,

0 ≤ Eµχ
2
y(x) · q(x) = Eµχy(x) · q(x)

=
∑

x∈{−1,1}n
µ(x)χy(x) · q(x)

= µ(y) · q(y)

Hence, if y is in the support of p, we may conclude q(y) ≥ 0. Every point in the support of
p satisfies q(x) ≥ 0.

Let’s motivate why this definition of “constrained” is natural. When considering vectors
v ∈ Rn, the constraint v non-negative, i.e., v ≥ 0, is equivalent to

⟨v, u⟩ ≥ 0

for all u ≥ 0. In our setting, to show q(x) is non-negative we would ideally like to show that,
with respect to our bi-linear form, ⟨q(x), p(x)⟩D is at least 0 for all non-negative polynomials
p. However, it is difficult to reason about non-negative polynomials; hence we settle for the
set of polynomials we can easily verify are non-negative – squares.

Corollary 2.5. For any q1(x), . . . qm(x) and p(x) all of degree at most t, finding a degree 2t
pseudo-distribution satisfying the constraints qi(x) ≥ 0 which maximizes p(x) is reducible to
a semi-definite program of size poly(m,nO(t)).
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Proof. We explicitly write out the SDP.

max
D

M · p

M∅,∅ = 1

M ⪰ 0

Mqi ≥ 0 for all i ∈ [m].

□

Next, we study restrictions of pseudo-distributions to a subset of variables.

Definition 2.7. A restriction of pseudo-distributionD to variables S is a pseudo-distribution
D′ over the variables in S such that

D′(y) =
∑

x|x|S=y

D(x).

Lemma 2.6 (Local Distributions). Suppose D is a local distribution on {−1, 1}n of degree
at least 2t. Consider the restriction of D to any set of variables S, where |S| ≤ t. Then,

there is a probability distribution µ on {−1, 1}S such that for all T ⊆ S, ẼD(XT ) = Eµ(XT ).

At this point, we instead talk about pseudo-distributions over {0, 1}n, since it is more
applicable to the Knapsack problem we are considering.

Lemma 2.7. Suppose for all x ∈ {0, 1}n,
∑n

i=1 cixi ≤ C implies
∑n

i=1 xi ≤ k. Then, for
every pseudo-distribution of degree at least 2k + 2 satisfying

∑n
i=1 cixi ≤ C, it holds that

ẼD(XS) = 0 for all S such that k + 1 ≤ |S| ≤ 2k + 2.

Proof. Case 1. We start with the case |S| = k+1. Since D is a pseudo-distribution of degree
at least 2k + 2 and S has size k + 1, we can consider the local distribution µ restricted to
variables S. Recall that µ and D agree on moments T where T is a subset of S. We want to
show that µ also satisfies the constraint

∑n
i=1 cixi ≤ C – if we had this, then by Remark 1

every point x in the support of µ satisfies the inequality
∑n

i=1 cixi ≤ C, which in turn by the

assumptions of the theorem, imply that
∑n

i=1 xi ≤ k. Therefore, ẼD(XS) = Eµ(XS) = 0.
So it remains to show that µ satisfies the constraint

∑n
i=1 cixi ≤ C. Recall µ is supported

on {0, 1}S; so for µ to satisfy the constraint, we would need

Ẽµ

((
C −

∑
i∈S

cixi

)
· f 2

)
≥ 0

for f : {0, 1}S → R of degree at most 2k+1
2

(effectively, at most k). Since µ and D agree on
all moments which are subsets of S, we have

Ẽµ

((
C −

∑
i∈S

cixi

)
· f 2

)
= ẼD

((
C −

∑
i∈S

cixi

)
· f 2

)
So, at this point, if we show

ẼD

((
C −

∑
i∈S

cixi

)
f 2

)
≥ 0

for any f of degree at most k, then we are done.
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From the definition of satisfying a constraint, we have

ẼD

((
C −

n∑
i=1

cixi

)
f 2

)
≥ 0.

Expanding the left hand side, we get

ẼD

((
C −

n∑
i=1

cixi

)
f 2

)
= ẼD

((
C −

n∑
i∈S

cixi

)
f 2

)
− ẼD

((∑
i ̸∈S

cixi

)
f 2

)
so it suffices to show

ẼD

((∑
i ̸∈S

cixi

)
f 2

)
≥ 0.

Note that

ẼD

(
f 2

(∑
i ̸∈S

cixi

))
=
∑
i ̸∈S

ciẼD(f
2xi)

Note that ẼD(f
2xi) = ẼD(f

2x2
i ) = ẼD((fxi)

2), and since fxi is a polynomial of degree at

most k + 1, by the degree of our pseudo-distribution, ẼD(f
2x2

i ) ≥ 0. And since ci ≥ 0, we
may conclude

ẼD

((∑
i ̸∈S

cixi

)
f 2

)
≥ 0

as desired.
Case 2. Take the case where |S| > k + 1. Let T ⊆ S be a set of size k + 1. Then,

XS = XT ·XS\T .

Note that |S \ T | ≤ 2k + 2− (k + 1) = k + 1. Hence, by Cauchy-Schwartz,

ẼD(XS) ≤
√

ẼD(X2
T ) ·

√
ẼD(X2

S\T ) = 0.

□

Lemma 2.8 (Global Distributions). Suppose D is a pseudo-distribution of degree at least

2k+2 on {0, 1}n such that for all S ⊆ [n] such that k+1 ≤ |S| ≤ 2k+2, we have ẼD(XS) = 0.
Then, there exists a probability distribution µ over {0, 1}n such that for all S ⊆ [n] such that

k + 1 ≤ |S| ≤ 2k + 2, EµXS = ẼD(XS).

Proof. We define µ as follows:

Ẽµ(XS) =

{
ẼD(XS) |S| ≤ 2k + 2

0 |S| > 2k + 2.

To show µ is a probability distribution over {0, 1}n, it suffices to show

Ẽµ(f
2) ≥ 0

for all polynomials f : {0, 1}n → R. To see this, we write f as

f =
∑

S||S|≤k+1

f̂SXS +
∑

S||S|>k+1

f̂SXS.
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Call the former term fsm and the latter term flg. Then,

f 2 = f 2
sm + 2fsmflg + f 2

lg.

And so,

Ẽµ(f
2) = Ẽµ(f

2
sm) + 2Ẽµ(fsmflg) + Ẽµ(f

2
lg)

≥ 0

since the first term is of degree at most 2k+2, and the latter terms are of degree larger than
2k + 2. □

3. An Approximation Algorithm for Knapsack

3.1. The Theorem and Proof.

Theorem 3.1. Consider a Knapsack instance with n items with costs c1, . . . , cn and values
v1, . . . , vn. Then, for every pseudo-distribution on x1, . . . , xn ∈ {0, 1} of degree at least 2t
satisfying

∑n
i=1 cixi ≤ C,

ẼD

(
n∑

i=1

vixi

)
≤
(
1 +

1

t− 1

)
OPT.

In particular, the integrality gap of the degree 2t SoS SDP is at most
(
1 + 1

t−1

)
.

Analog proof for probability distributions. To give motivation for how we approach the prob-
lem with pseudo-distributions, let’s first prove this for probability distributions µ satisfying
the constraint

∑n
i=1 cixi ≤ C. We want to show Eµ(

∑n
i=1 vixi) is not too large. Consider

the expectation of
∑n

i=1 vixi when U ⊆ S is chosen; in particular, we have

Eµ

(
n∑

i=1

vixi

)
=
∑
U⊆S

Eµ

(
n∑

i=1

vixi · fS,U

)
.

Next, we decompose the sum
∑n

i=1 into terms in S and terms not in S. We notice that
Eµ(fS,U) = P(x|S = U). Therefore,

Eµ

(
n∑

i=1

vixi

)
=
∑
U⊆S

Eµ

(
n∑

i=1

vixi · fS,U

)

=
∑
U⊆S

(
Eµ

(∑
i∈S

vixi · fS,U

)
+ Eµ

(∑
i ̸∈S

vixi · fS,U

))

=
∑
U⊆S

((∑
i∈U

vi

)
Eµ(·fS,U) + Eµ

(∑
i ̸∈S

vixi · fS,U

))

For the latter term, we recall that we defined yUi to satisfy

Eµ(xi · fS,U) = Eµ(fS,U) · yUi .
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Hence,

Eµ

(
n∑

i=1

vixi

)
=
∑
U⊆S

((∑
i∈U

vi

)
Eµ(·fS,U) + Eµ

(∑
i ̸∈S

vixi · fS,U

))

=
∑
U⊆S

((∑
i∈U

vi

)
Eµ(·fS,U) +

∑
i ̸∈S

viy
U
i · Eµ(fS,U)

)

=
∑
U⊆S

Eµ(fS,U) ·

(∑
i∈U

vi +
∑
i∈S

viy
U
i

)
At this point, we recall that yUi is between 0 and 1, and we have

∑
i ̸∈S y

U
i ≤ C −

∑
i∈U ci.

Therefore, by the linear programming bound on Knapsack, we have∑
i∈S

viy
U
i ≤ OPT restricted to items U chosen +

OPT

t− 1
.

So, in total, we get

Eµ

(
n∑

i=1

vixi

)
=
∑
U⊆S

Eµ(fS,U) ·

(∑
i∈U

vi +
∑
i∈S

viy
U
i

)

≤
∑
U⊆S

Eµ(fS,U)

(∑
i∈U

vi +OPT (C −
∑
i∈U

ci) +
OPT

t− 1

)

=
∑
U⊆S

Eµ(fS,U)OPT +
OPT

t− 1

=

(
1 +

1

t− 1

)
OPT

as desired. □

Let S := {i | vi ≥ OPT
t−1

}. Then, we clearly have that
∑

i∈S xi ≥ t implies
∑n

i=1 cixi > C.

Hence, we have the implication
∑n

i=1 cixi ≤ C implies
∑

i∈S xi ≤ t− 1.

Remark 2. We have that for any pseudo-distribution of degree at least 2t satisfying
∑n

i=1 cixi ≤
C, it must hold that, for all T ⊆ S where t ≤ |T | ≤ 2t, ẼD(XT ) = 0. In particular, we know
that D restricted to S has a probability distribution µ which agrees with it up to 2t moments.
Note that S may be of size much larger than 2t, so this is not just the local distribution
property.

Let us call D′ as the distribution D restricted to S. We define fS,U : {0, 1}S → R as

fS,U(x) =

{
1 if xi = 1 for all i ∈ U and xi = 0 for all i ∈ S \ U .

0 otherwise
.

In other words, fS,U is an indicator function over {0, 1}S.

Lemma 3.2. For all x ∈ {0, 1}S, ∑
U⊆S

fS,U(x) = 1.
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Proof. Trivial. □

Lemma 3.3. For all T ⊆ S such that |T | ≤ 2t− 1 and for all i ̸∈ T ,

ẼD′(XT · xi) = 0.

Proof. Let T1 ⊆ T be a subset of size t. Then, by Cauchy-Schwartz

ẼD′(XT · xi) = ẼD′(XT1 ·XT\T1 · xi)

≤
√

ẼD′(X2
T1
) ·
√
ẼD′(X2

T\T1
· x2

i )

≤ 0 ·
√

ẼD′(X2
T\T1

· x2
i )

= 0.

Note we can apply Cauchy-Schwartz because D′ is of degree 2t, and deg(XT1) = t and
deg(XT\T1 · xi) ≤ t. □

At this point, we want to reason about the behavior of ẼD on f . However, ẼD really
only has well-defined behavior for polynomials of degree less than or equal to 2d. The
follow operation will help us relate the pseudo-expectation of high degree polynomial to a
low-degree one.

Definition 3.1 (Reduction of f). For any polynomial f =
∑

T⊆S f̂TXT over {0, 1}S, we
define Red(f) as just the low-degree terms of f , i.e.,

Red(f) :=
∑

T⊆S||T |<t

f̂TXT .

Recall that f is an element of the vector space of functions (or really, polynomials) from
{0, 1}S to R, and hence, Red(f) can be seen as simply projecting f onto the subspace of
polynomials of low-degree. In other words, Red(f) is a liner operator over polynomials.

Lemma 3.4. For all x ∈ {0, 1}S, we have,∑
U⊆S

Red(fS,U)(x) = 1.

Proof. Recall that Lemma 3.2 asserts
∑

U⊆S fS,U(x) = 1. Since Red is a linear operator on
polynomials, we have

Red

(∑
U⊆S

fS,U(x)

)
=
∑
U⊆S

Red(fS,U(x)).

Also, clearly,
Red(1) = 1.

So, we have

1 = Red

(∑
U⊆S

fS,U(x)

)
=
∑
U⊆S

Red(fS,U(x)).

□

Lemma 3.5. For all i ∈ S ∑
U⊆S

Red(fS,U) · xi = xi.



12 PRAVESH K. KOTHARI AND SHERRY SARKAR CARNEGIE MELLON UNIVERSITY

Proof.

xi = 1 · xi

=

(∑
U⊆S

Red(fS,U)

)
· xi

=
∑
U⊆S

Red(fS,U) · xi.

□

Definition 3.2 (“Conditional Expectation”). We define, for a given i ∈ [n]

yUi :=
ẼD(xi · Red(fS,U))
ẼD(Red(fS,U))

.

We state several key facts we’ll need about yUi , and then use these facts to finally present
a proof of the main theorem.

Lemma 3.6. For all i ∈ [n],

(a)

0 ≤ yUi ≤ 1

and
(b) ∑

i ̸∈S

yUi ci ≤ C −
∑
i∈U

ci.

Real proof of Theorem 3.1. Take a pseudo-distribution D of degree 2t which satisfies the
constraint

∑n
i=1 cixi ≤ C. We want to analyze ẼD (

∑n
i=1 vixi). Recall we define S as the set

of high value items – S := {i | vi ≥ OPT
t−1

}
First, we use Lemma 3.5 to deduce

ẼD

(
n∑

i=1

vixi

)
=

n∑
i=1

viẼD (xi)

=
n∑

i=1

viẼD

(∑
U⊆S

Red(fS,U)xi

)

=
n∑

i=1

∑
U⊆S

viẼD(Red(fS,U)xi)

=
∑
U⊆S

ẼD

(
n∑

i=1

vixiRed(fS,U)

)
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Next, we partition the inner sum into terms in S and terms not in S –

ẼD

(
n∑

i=1

vixi

)
=
∑
U⊆S

ẼD

(
n∑

i=1

vixiRed(fS,U)

)

=
∑
U⊆S

ẼD

(∑
i∈S

vixiRed(fS,U) +
∑
i ̸∈S

vixiRed(fS,U)

)

=
∑
U⊆S

ẼD

(∑
i∈S

vixiRed(fS,U) +
∑
i ̸∈S

vixiRed(fS,U)

)

=
∑
U⊆S

ẼD

(∑
i∈S

vixiRed(fS,U)

)
+
∑
U⊆S

ẼD

(∑
i ̸∈S

vixiRed(fS,U)

)
.

For the first term, we note that, restricted to S, D has a corresponding global distribution
which agrees with D for low-degree terms. Also, note that RedfS,U takes only takes on values
0 and 1. Hence, for a given U ⊆ S,

ẼD

(∑
i∈S

vixiRed(fS,U)

)
=

(∑
i∈U

vi

)
ẼD(Red(fS,U)).

For the latter term, we use the definition of yUi . Recall,

ẼD(xi · fS,U) = yUi · ẼD(fS,U).

Hence, for a given U ⊆ S, we have

ẼD

(∑
i ̸∈S

vixiRed(fS,U)

)
= ẼD(Red(fS,U) ·

∑
i ̸∈S

viy
U
i .

In total, we have

ẼD

(
n∑

i=1

vixi

)
=
∑
U⊆S

ẼD

(∑
i∈S

vixiRed(fS,U)

)
+
∑
U⊆S

ẼD

(∑
i ̸∈S

vixiRed(fS,U)

)

=
∑
U⊆S

(∑
i∈U

vi

)
ẼD(Red(fS,U)) +

∑
U⊆S

ẼD(Red(fS,U) ·
∑
i ̸∈S

viy
U
i .

At this point, we note that the term
∑

i ̸∈S viy
U
i can be upper bounded by the linear

program

max
∑
i ̸∈S

yivi∑
i ̸∈S

yici ≤ C

0 ≤ yi ≤ 1
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which we know will have value at most OPT ′ + OPT/t where OPT ′ the the optimal value
given capacity C −

∑
i∈U ci. So,

ẼD

(
n∑

i=1

vixi

)
=
∑
U⊆S

(∑
i∈U

vi

)
ẼD(Red(fS,U)) +

∑
U⊆S

ẼD(Red(fS,U) ·
∑
i ̸∈S

viy
U
i

≤
∑
U⊆S

ẼD(Red(fS,U))

(∑
i∈U

vi +OPT ′ +OPT/t

)

≤
(
1 +

1

t

)
OPT

∑
U⊆S

ẼD(Red(fS,U)

=

(
1 +

1

t

)
OPT.

□

3.2. The Lemmas. We use the following fact in our analysis:

Lemma 3.7. For all U ⊆ S,

ẼD(Red(f
2
S,Uxi)) = ẼD(Red(fS,U)

2)

Proof. For a given U ⊆ S and i ∈ [n], we have

f 2
S,U = fS,U .

since f is an indicator function taking on values 0 and 1. Applying Red to both sides, we
get

Red(f 2
S,U) = Red(fS,U)

which implies

Red(f 2
S,U)xi = Red(fS,U)xi.

To reason about ẼD(Red(fS,U)
2), we note

Red(fS,U)
2 = Red(f 2

S,U) + g

where g is a polynomial of degree at least t. We know that ẼD(XT · xi) = 0 for all T ⊆ S of

size at least t. Thus, ẼD(g · xi) = 0. This proves our claim. □

We proceed to prove Lemma 3.6.

Proof of Lemma 3.6. First, we prove that yUi ≤ 1. Recall

yUi =
ẼD(xi · Red(fS,U))
ẼD(Red(fS,U)

.
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Our first case will be if ẼD(Red(fS,U)) = 0. In this case, by Cauchy-Schwartz (note that
RedfS,U and xi are both polynomials of degree at most t), we have

ẼD(xi · Red(fS,U))) ≤
√

ẼD(Red(fS,U)2)

√
ẼD(x2

i )

=

√
ẼD(Red(fS,U)) ·

√
ẼD(x2

i )

= 0 ·
√
ẼD(x2

i )

= 0.

Hence, we consider the case where ẼD(Red(fS,U) is not zero. Here, we have

yUi =
ẼD(xi · Red(fS,U))
ẼD(Red(fS,U))

=
ẼD(xi · Red(fS,U)2)
ẼD(Red(fS,U))

.

Note that since (1− xi) = (1− xi)
2 (since xi takes on values 0 or 1), we have

ẼD(Red(fS,U)
2(1− xi)) = ẼD(Red(fS,U)

2(1− 2xi + x2
i ))

= ẼD(Red(fS,U)
2(1− xi)

2)

≥ 0.

Therefore, ẼD(xi ·Red(fS,U)) = ẼD(xi ·Red(fS,U)2) ≤ ẼD(Red(fS,U)), which implies yUi ≤ 1.

Next, we prove yUi ≥ 0. The denominator satisfies

ẼD(Red(fS,U)) = ẼD(Red(fS,U)
2) ≥ 0

and the numerator satisfies (since it is a product of indicator functions)

ẼD(Red(fS,U)xi) = ẼD(Red(fS,U)
2x2

i ) ≥ 0.

Lastly, it remains to prove ∑
i ̸∈S

yUi ci ≤ C −
∑
i∈U

ci.

Note that by the definition of Red(fS,U) and Remark 2 ,

ẼD

(∑
i∈S

xiciRed(fS,U)

)
= Ẽµ

(∑
i∈S

xicifS,U

)
(1)

=
∑
i∈U

ciẼD(Red(fS,U)).(2)

On the other hand,

ẼD

∑
i∈[n]

xiciRed(fS,U)

 = ẼD

∑
i∈[n]

xiciRed(fS,U)
2

 .
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Since Red(fS,U)
2 is a square of a degree t − 1 polynomial and D is a pseudo-distribution

satisfying the appropriate constraints, we have

ẼD

Red(fS,U)
2

C −
∑
i∈[n]

cixi

 ≥ 0.

In particular, we have

C · ẼD(Red(fS,U)) = C · ẼD(Red(fS,U)
2) ≥ ẼD

∑
i∈[n]

cixiRed(fS,U)

 .(3)

Subtracting (1) from (3), we get

ẼD

(∑
i ̸∈S

Red(fS,U)xici

)
≤ C · ẼD(fS,U)−

∑
i∈U

ciẼD(Red(fS,U)).

This gives us our desired result. □
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